Gravity in the stabilized brane world model in the five-dimensional Brans–Dicke theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 1, pp. 120-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain and solve the linearized equations of motion for gravity and scalar fields in the world stabilized brane model in the five-dimensional Brans–Dicke theory. We segregate the physical degrees of freedom and find the mass spectrum of the Kaluza–Klein excitations and the coupling constants of Kaluza–Klein modes to matter on the brane with negative tension.
Keywords: Kaluza–Klein theory, Brans–Dicke theory, radion stabilization, linearized gravity.
Mots-clés : brane
@article{TMF_2009_161_1_a10,
     author = {I. P. Volobuev and A. S. Mikhailov and Yu. S. Mikhailov and M. N. Smolyakov},
     title = {Gravity in the~stabilized brane world model in the~five-dimensional {Brans{\textendash}Dicke} theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {120--135},
     year = {2009},
     volume = {161},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_1_a10/}
}
TY  - JOUR
AU  - I. P. Volobuev
AU  - A. S. Mikhailov
AU  - Yu. S. Mikhailov
AU  - M. N. Smolyakov
TI  - Gravity in the stabilized brane world model in the five-dimensional Brans–Dicke theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 120
EP  - 135
VL  - 161
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_161_1_a10/
LA  - ru
ID  - TMF_2009_161_1_a10
ER  - 
%0 Journal Article
%A I. P. Volobuev
%A A. S. Mikhailov
%A Yu. S. Mikhailov
%A M. N. Smolyakov
%T Gravity in the stabilized brane world model in the five-dimensional Brans–Dicke theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 120-135
%V 161
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_161_1_a10/
%G ru
%F TMF_2009_161_1_a10
I. P. Volobuev; A. S. Mikhailov; Yu. S. Mikhailov; M. N. Smolyakov. Gravity in the stabilized brane world model in the five-dimensional Brans–Dicke theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 1, pp. 120-135. http://geodesic.mathdoc.fr/item/TMF_2009_161_1_a10/

[1] L. Randall, R. Sundrum, Phys. Rev. Lett., 83:17 (1999), 3370–3373 | DOI | MR | Zbl

[2] V. A. Rubakov, UFN, 171:9 (2001), 913–938 | DOI

[3] Yu. A. Kubyshin, Models with extra dimensions and their phenomenology, arXiv: hep-ph/0111027

[4] E. E. Boos, I. P. Volobuev, Yu. A. Kubyshin, M. N. Smolyakov, TMF, 131:2 (2002), 216–230 | DOI | Zbl

[5] O. DeWolfe, D. Z. Freedman, S. S. Gubser, A. Karch, Phys. Rev. D, 62:4 (2000), 046008 | DOI | MR

[6] E. E. Boos, I. P. Volobuev, Yu. C. Mikhailov, M. N. Smolyakov, TMF, 149:3 (2006), 339–353 | DOI | MR | Zbl

[7] B. Grzadkowski, J. F. Gunion, Phys. Rev. D, 68:5 (2003), 055002 | DOI

[8] A. S. Mikhailov, Yu. S. Mikhailov, M. N. Smolyakov, I. P. Volobuev, Class. Quant. Grav., 24:1 (2007), 231–242 | DOI | MR | Zbl

[9] I. Ya. Aref'eva, M. G. Ivanov, W. Mück, K. S. Viswanathan, I. V. Volovich, Nucl. Phys. B, 590:1–2 (2000), 273–286 | DOI | MR | Zbl

[10] Ch. Charmousis, R. Gregory, V. Rubakov, Phys. Rev. D, 62:6 (2000), 067505 | DOI | MR

[11] G. R. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B, 485:1–3 (2000), 208–214 | DOI | MR | Zbl

[12] A. O. Barvinsky, Phys. Rev. D, 74:8 (2006), 084033 | DOI | MR

[13] V. M. Babich, M. B. Kapilevich, S. G. Mikhlin i dr., Lineinye uravneniya matematicheskoi fiziki, Nauka, M., 1964 | MR | MR | Zbl

[14] O. Sh. Mukhtarov, M. Kadakal, Sib. matem. zhurn., 46:4 (2005), 860–875 | DOI | MR | Zbl