Integrable elliptic pseudopotentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 1, pp. 21-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct integrable pseudopotentials with an arbitrary number of fields in terms of an elliptic generalization of hypergeometric functions in several variables. These pseudopotentials are multiparameter deformations of ones constructed by Krichever in studying the Whitham-averaged solutions of the KP equation and yield new integrable $(2{+}1)$-dimensional systems of hydrodynamic type. Moreover, an interesting class of integrable $(1{+}1)$-dimensional systems described in terms of solutions of an elliptic generalization of the Gibbons–Tsarev system is related to these pseudopotentials.
Keywords: integrable three-dimensional system of hydrodynamic type, elliptic hypergeometric function.
@article{TMF_2009_161_1_a1,
     author = {A. V. Odesskii and V. V. Sokolov},
     title = {Integrable elliptic pseudopotentials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {21--36},
     year = {2009},
     volume = {161},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_1_a1/}
}
TY  - JOUR
AU  - A. V. Odesskii
AU  - V. V. Sokolov
TI  - Integrable elliptic pseudopotentials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 21
EP  - 36
VL  - 161
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_161_1_a1/
LA  - ru
ID  - TMF_2009_161_1_a1
ER  - 
%0 Journal Article
%A A. V. Odesskii
%A V. V. Sokolov
%T Integrable elliptic pseudopotentials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 21-36
%V 161
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_161_1_a1/
%G ru
%F TMF_2009_161_1_a1
A. V. Odesskii; V. V. Sokolov. Integrable elliptic pseudopotentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 1, pp. 21-36. http://geodesic.mathdoc.fr/item/TMF_2009_161_1_a1/

[1] A. Odesskii, V. Sokolov, Integrable pseudopotentials related to generalized hypergeometric functions, arxiv:0803.0086 | MR

[2] I. M. Gelfand, M. I. Graev, V. S. Retakh, UMN, 47:4(286) (1992), 3–82 | DOI | MR | Zbl

[3] V. E. Zakharov, “Dispersionless limit of integrable systems in $2+1$ dimensions”, Singular Limits of Dispersive Waves, NATO Adv. Sci. Inst. Ser. B Phys., 320, eds. N. M. Ercolani, I. R. Gabitov, C. D. Levermore, D. Serre, Plenum, New York, 1994, 165–174 | MR | Zbl

[4] I. M. Krichever, Comm. Math. Phys., 143:2 (1992), 415–429 | DOI | MR | Zbl

[5] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | MR | Zbl

[6] I. M. Krichever, Comm. Pure Appl. Math., 47:4 (1994), 437–475 | DOI | MR | Zbl

[7] B. A. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups, Lecture Notes in Math., 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[8] A. V. Odesskii, Selecta Math., 13:4 (2008), 727–742 | DOI | MR | Zbl

[9] V. P. Spiridonov, UMN, 63:3(381) (2008), 3–72 | DOI | MR | Zbl

[10] J. Gibbons, S. P. Tsarev, Phys. Lett. A, 211:1 (1996), 19–24 ; 258:4–6 (1999), 263–271 | DOI | MR | Zbl | DOI | MR | Zbl

[11] E. V. Ferapontov, K. R. Khusnutdinova, Comm. Math. Phys., 248:1 (2004), 187–206 | DOI | MR | Zbl

[12] B. A. Dubrovin, S. P. Novikov, UMN, 44:6(270) (1989), 29–98 | DOI | MR | Zbl

[13] S. P. Tsarev, DAN SSSR, 282:3 (1985), 534–537 ; С. П. Царев, Изв. АН СССР. Сер. матем., 54:5 (1990), 1048–1068 | MR | Zbl | DOI | MR | Zbl

[14] M. V. Pavlov, Comm. Math. Phys., 272:2 (2007), 469–505 | DOI | MR | Zbl

[15] V. A. Shramchenko, J. Phys. A, 36:42 (2003), 10585–10605 ; arxiv: math-ph/0402014 | DOI | MR | Zbl

[16] A. A. Akhmetshin, Yu. S. Volvovskii, I. M. Krichever, UMN, 54:2(326) (1999), 167–168 | DOI | MR | Zbl

[17] E. V. Ferapontov, D. G. Marshal, Math. Ann., 339:1 (2007), 61–99 | DOI | MR | Zbl

[18] M. V. Pavlov, J. Phys. A, 39:34 (2006), 10803–10819 | DOI | MR | Zbl

[19] A. V. Odesskii, M. V. Pavlov, V. V. Sokolov, TMF, 154:2 (2008), 249–260 | DOI | MR | Zbl