Separability and entanglement in tripartite states
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 534-544 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

While classical correlations can be freely distributed among many systems, this is not true for entanglement and quantum correlations. If a quantum system $S^a$ is entangled with another quantum system $S^b$, then its entanglement with any third quantum system $S^c$ cannot be arbitrary. This is the celebrated monogamy of entanglement. Implicit in this general statement is the plausible belief that only entanglement between the systems $S^a$ and $S^b$ constrains the entanglement between $S^a$ and the third system $S^c$. We demonstrate that even classical correlations between $S^a$ and $S^b$ may impose surprisingly stringent restrictions on the possible entanglement between $S^a$ and $S^c$. In particular, perfect bipartite classical correlations and full entanglement cannot coexist in any tripartite state. An intuitive explanation of this monogamy of hybrid classical and quantum correlations might be that the system $S^a$ has a correlating capability, which cannot be used to establish any entanglement with a third system (but can still be used to establish classical correlations) if it is exhausted when correlated with $S^b$ (in either a classical or quantum fashion). This may be interpreted as an alternate version of monogamy.
Keywords: correlation, classical state, separability.
Mots-clés : tripartite state, entanglement
@article{TMF_2009_160_3_a7,
     author = {Shunlong Luo and Wei Sun},
     title = {Separability and entanglement in tripartite states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {534--544},
     year = {2009},
     volume = {160},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a7/}
}
TY  - JOUR
AU  - Shunlong Luo
AU  - Wei Sun
TI  - Separability and entanglement in tripartite states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 534
EP  - 544
VL  - 160
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a7/
LA  - ru
ID  - TMF_2009_160_3_a7
ER  - 
%0 Journal Article
%A Shunlong Luo
%A Wei Sun
%T Separability and entanglement in tripartite states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 534-544
%V 160
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a7/
%G ru
%F TMF_2009_160_3_a7
Shunlong Luo; Wei Sun. Separability and entanglement in tripartite states. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 534-544. http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a7/

[1] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[2] W. K. Wootters, W. H. Zurek, Nature, 299 (1982), 802–803 | DOI

[3] D. Dieks, Phys. Lett. A, 92:6 (1982), 271–272 | DOI

[4] H. P. Yuen, Phys. Lett. A, 113:8 (1986), 405–407 | DOI | MR

[5] V. Scarani, S. Iblisdir, N. Gisin, Rev. Modern Phys., 77:4 (2005), 1225–1256 | DOI | MR | Zbl

[6] A. K. Pati, S. L. Braunstein, Nature, 404 (2000), 164–165 | DOI

[7] H. Barnum, C. Caves, C. Fuchs, R. Jozsa, B. Schumacher, Phys. Rev. Lett., 76:15 (1996), 2818–2821 | DOI

[8] M. Piani, P. Horodecki, R. Horodecki, Phys. Rev. Lett., 100:9 (2008), 090502 | DOI

[9] M. Piani, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. A, 74:1 (2006), 012305 | DOI

[10] L. Masanes, A. Acin, N. Gisin, Phys. Rev. A, 73:1 (2006), 012112 | DOI

[11] V. Coffman, J. Kundu, W. K. Wootters, Phys. Rev. A, 61:5 (2000), 052306 | DOI

[12] B. M. Terhal, IBM J. Res. Develop., 48:1 (2004), 71–78 | DOI

[13] T. J. Osborne, F. Verstraete, Phys. Rev. Lett., 96:22 (2006), 220503 | DOI

[14] G. Adesso, F. Illuminati, Phys. Rev. Lett., 99:15 (2007), 150501 | DOI

[15] Y.-C. Ou, Phys. Rev. A, 75:3 (2007), 034305 | DOI

[16] R. F. Werner, Phys. Rev. A, 40:8 (1989), 4277–4281 | DOI

[17] A. Peres, Phys. Rev. Lett., 77:8 (1996), 1413–1415 ; M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A, 223:1–2 (1996), 1–8 ; M. Lewenstein, B. Kraus, J. I. Cirac, P. Horodecki, Phys. Rev. A, 62:5 (2000), 052310 ; H. F. Hofmann, S. Takeuchi, Phys. Rev. A, 68:3 (2003), 032103 ; O. Gühne, N. Lütkenhaus, Phys. Rev. Lett., 96:17 (2006), 170502 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | DOI | MR | DOI | MR

[18] S. Luo, Phys. Rev. A, 77:2 (2008), 022301 | DOI

[19] S. Luo, Q. Zhang, J. Stat. Phys., 131:6 (2008), 1169–1177 | DOI | MR | Zbl

[20] H. Ollivier, W. H. Zurek, Phys. Rev. Lett., 88:1 (2001), 017901 ; W. H. Zurek, Rev. Modern Phys., 75:3 (2003), 715–775 | DOI | MR | DOI | MR | Zbl

[21] A. Wehrl, Rev. Modern Phys., 50:2 (1978), 221–260 | DOI | MR

[22] V. Vedral, Rev. Modern Phys., 74:1 (2002), 197–234 | DOI | MR | Zbl

[23] M. B. Ruskai, J. Math. Phys., 43:9 (2002), 4358–4375 | DOI | MR | Zbl

[24] N. Li, S. Luo, Phys. Rev. A, 78:2 (2008), 024303 | DOI | MR

[25] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, W. K. Wootters, Phys. Rev. A, 54:5 (1996), 3824–3851 | DOI | MR

[26] D. Collins, S. Popescu, Phys. Rev. A, 65:3 (2002), 032321 | DOI

[27] A. Allahverdyan, A. Khrennikov, Th. M. Nieuwenhuizen, Phys. Rev. A, 72:3 (2005), 032102 | DOI | MR

[28] Y.-K. Liu, M. Christandl, F. Verstraete, Phys. Rev. Lett., 98:11 (2007), 110503 | DOI

[29] A. J. Coleman, V. I. Yukalov, Reduced Density Matrices. Coulson's Challenge, Lecture Notes in Chemistry, 72, Springer, Berlin, 2000 | DOI | MR | Zbl

[30] N. N. Vorobev, TVP, 7:2 (1962), 153–169 | DOI | Zbl

[31] A. Khrennikov, Bell's inequality: Physics meets Probability, , 2007 arXiv: 0709.3909 | MR