Separability and entanglement in tripartite states
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 534-544
Voir la notice de l'article provenant de la source Math-Net.Ru
While classical correlations can be freely distributed among many systems, this is not true for entanglement and quantum correlations. If a quantum system $S^a$ is entangled with another quantum system $S^b$, then its entanglement with any third quantum system $S^c$ cannot be arbitrary. This is the celebrated monogamy of entanglement. Implicit in this general statement is the plausible belief that only entanglement between the systems $S^a$ and $S^b$ constrains the entanglement between $S^a$ and the third system $S^c$. We demonstrate that even classical correlations between $S^a$ and $S^b$ may impose surprisingly stringent restrictions on the possible entanglement between $S^a$ and $S^c$. In particular, perfect bipartite classical correlations and full entanglement cannot coexist in any tripartite state. An intuitive explanation of this monogamy of hybrid classical and quantum correlations might be that the system $S^a$ has a correlating capability, which cannot be used to establish any entanglement with a third system (but can still be used to establish classical correlations) if it is exhausted when correlated with $S^b$ (in either a classical or quantum fashion). This may be interpreted as an alternate version of monogamy.
Keywords:
correlation, classical state, separability.
Mots-clés : tripartite state, entanglement
Mots-clés : tripartite state, entanglement
@article{TMF_2009_160_3_a7,
author = {Shunlong Luo and Wei Sun},
title = {Separability and entanglement in tripartite states},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {534--544},
publisher = {mathdoc},
volume = {160},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a7/}
}
Shunlong Luo; Wei Sun. Separability and entanglement in tripartite states. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 534-544. http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a7/