Keywords: Bogoliubov generating functional, molecular random walk, kinetic theory of gases and liquids.
@article{TMF_2009_160_3_a6,
author = {Yu. E. Kuzovlev},
title = {Molecular random walk and a~symmetry group of {the~Bogoliubov} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {517--533},
year = {2009},
volume = {160},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a6/}
}
Yu. E. Kuzovlev. Molecular random walk and a symmetry group of the Bogoliubov equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 517-533. http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a6/
[1] Ya. G. Sinai, UMN, 25:2(152) (1970), 141–192 | DOI | MR | Zbl
[2] N. S. Krylov, Raboty po obosnovaniyu statisticheskoi fiziki, Izd. AN SSSR, M.-L., 1950 | MR
[3] A. N. Kolmogorov, Osnovnye ponyatiya teorii veroyatnostei, Nauka, M., 1974 | MR | MR | Zbl
[4] G. A. Galperin, A. N. Zemlyakov, Matematicheskie bilyardy, Nauka, M., 1990 | MR | Zbl
[5] V. I. Arnold, A. Avets, Ergodicheskie problemy klassicheskoi mekhaniki, RKhD, Izhevsk, 1999 | MR | Zbl
[6] G. N. Bochkov, Yu. E. Kuzovlev, UFN, 141:1 (1983), 151–176 | DOI
[7] Yu. E. Kuzovlev, ZhETF, 94:12 (1988), 238
[8] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.-L., 1946 | MR | MR | Zbl
[9] D. Ryuel, Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971 | MR | Zbl
[10] V. P. Silin, Vvedenie v kineticheskuyu teoriyu gazov, Izd. FI RAN, M., 1998
[11] Yu. E. Kuzovlev, Molecular Brownian motion and falsity of the ‘law of large numbers’, , 2007 http:www.ma.utexas.edu/mp_arc-bin/mpa?yn=07-309
[12] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika T. 5. Statisticheskaya fizika. Chast 1, Nauka, M., 1976 | MR | MR | Zbl
[13] E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika T. 10. Fizicheskaya kinetika, Nauka, M., 1979 | MR | MR | Zbl
[14] Yu. E. Kuzovlev, A truth about Brownian motion in gases and in general, arXiv: 0710.3831
[15] Yu. E. Kuzovlev, Virial expansion of molecular Brownian motion versus tales of “statistical independency”, arXiv: 0802.0288
[16] G. N. Bochkov, Yu. E. Kuzovlev, ZhETF, 72 (1977), 238–247 ; 76 (1979), 1071 ; 79 (1980), 2239–2251 | MR
[17] G. N. Bochkov, Yu. E. Kuzovlev, Phys. A, 106:3 (1981), 443–479 | DOI | MR
[18] P. Rezibua, M. De-Lener, Kineticheskaya teoriya zhidkostei i gazov, Mir, M., 1980
[19] H. van Beijeren, O. E. Lanford III, J. L. Lebowitz, H. Spohn, J. Stat. Phys., 22:2 (1980), 237–257 | DOI | MR | Zbl
[20] Yu. E. Kuzovlev, On Brownian motion in ideal gas and related principles, arXiv: 0806.4157
[21] Yu. E. Kuzovlev, On statistics and $1/f$ noise of Brownian motion in Boltzmann–Grad gas and finite gas on torus. I. Infinite gas, arXiv: cond-mat/0609515
[22] Yu. E. Kuzovlev, Kinetical theory beyond conventional approximations and $1/f$-noise, arXiv: cond-mat/9903350
[23] Yu. E. Kuzovlev, G. N. Bochkov, Izv. vuzov. Ser. radiofizika, 26:3 (1983), 310–317 ; 27:9 (1984), 1151–1157 | DOI | DOI