Molecular random walk and a symmetry group of the Bogoliubov equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 517-533 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the statistics of molecular random walks in fluids using the Bogoliubov equation for the generating functional of the distribution functions. We obtain the symmetry group of this equation and its solutions as functions of the medium density. It induces a series of exact relations between the probability distribution of the total path of a walking test particle and its correlations with the environment and consequently imposes serious constraints on the possible form of the path distribution. In particular, the Gaussian asymptotic form of the distribution is definitely forbidden (even for the Boltzmann–Grad gas), but the diffusive asymptotic form with power-law tails (cut off by the ballistic flight length) is allowed.
Mots-clés : BBGKY equation, diffusion
Keywords: Bogoliubov generating functional, molecular random walk, kinetic theory of gases and liquids.
@article{TMF_2009_160_3_a6,
     author = {Yu. E. Kuzovlev},
     title = {Molecular random walk and a~symmetry group of {the~Bogoliubov} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {517--533},
     year = {2009},
     volume = {160},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a6/}
}
TY  - JOUR
AU  - Yu. E. Kuzovlev
TI  - Molecular random walk and a symmetry group of the Bogoliubov equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 517
EP  - 533
VL  - 160
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a6/
LA  - ru
ID  - TMF_2009_160_3_a6
ER  - 
%0 Journal Article
%A Yu. E. Kuzovlev
%T Molecular random walk and a symmetry group of the Bogoliubov equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 517-533
%V 160
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a6/
%G ru
%F TMF_2009_160_3_a6
Yu. E. Kuzovlev. Molecular random walk and a symmetry group of the Bogoliubov equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 517-533. http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a6/

[1] Ya. G. Sinai, UMN, 25:2(152) (1970), 141–192 | DOI | MR | Zbl

[2] N. S. Krylov, Raboty po obosnovaniyu statisticheskoi fiziki, Izd. AN SSSR, M.-L., 1950 | MR

[3] A. N. Kolmogorov, Osnovnye ponyatiya teorii veroyatnostei, Nauka, M., 1974 | MR | MR | Zbl

[4] G. A. Galperin, A. N. Zemlyakov, Matematicheskie bilyardy, Nauka, M., 1990 | MR | Zbl

[5] V. I. Arnold, A. Avets, Ergodicheskie problemy klassicheskoi mekhaniki, RKhD, Izhevsk, 1999 | MR | Zbl

[6] G. N. Bochkov, Yu. E. Kuzovlev, UFN, 141:1 (1983), 151–176 | DOI

[7] Yu. E. Kuzovlev, ZhETF, 94:12 (1988), 238

[8] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.-L., 1946 | MR | MR | Zbl

[9] D. Ryuel, Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971 | MR | Zbl

[10] V. P. Silin, Vvedenie v kineticheskuyu teoriyu gazov, Izd. FI RAN, M., 1998

[11] Yu. E. Kuzovlev, Molecular Brownian motion and falsity of the ‘law of large numbers’, , 2007 http:www.ma.utexas.edu/mp_arc-bin/mpa?yn=07-309

[12] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika T. 5. Statisticheskaya fizika. Chast 1, Nauka, M., 1976 | MR | MR | Zbl

[13] E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika T. 10. Fizicheskaya kinetika, Nauka, M., 1979 | MR | MR | Zbl

[14] Yu. E. Kuzovlev, A truth about Brownian motion in gases and in general, arXiv: 0710.3831

[15] Yu. E. Kuzovlev, Virial expansion of molecular Brownian motion versus tales of “statistical independency”, arXiv: 0802.0288

[16] G. N. Bochkov, Yu. E. Kuzovlev, ZhETF, 72 (1977), 238–247 ; 76 (1979), 1071 ; 79 (1980), 2239–2251 | MR

[17] G. N. Bochkov, Yu. E. Kuzovlev, Phys. A, 106:3 (1981), 443–479 | DOI | MR

[18] P. Rezibua, M. De-Lener, Kineticheskaya teoriya zhidkostei i gazov, Mir, M., 1980

[19] H. van Beijeren, O. E. Lanford III, J. L. Lebowitz, H. Spohn, J. Stat. Phys., 22:2 (1980), 237–257 | DOI | MR | Zbl

[20] Yu. E. Kuzovlev, On Brownian motion in ideal gas and related principles, arXiv: 0806.4157

[21] Yu. E. Kuzovlev, On statistics and $1/f$ noise of Brownian motion in Boltzmann–Grad gas and finite gas on torus. I. Infinite gas, arXiv: cond-mat/0609515

[22] Yu. E. Kuzovlev, Kinetical theory beyond conventional approximations and $1/f$-noise, arXiv: cond-mat/9903350

[23] Yu. E. Kuzovlev, G. N. Bochkov, Izv. vuzov. Ser. radiofizika, 26:3 (1983), 310–317 ; 27:9 (1984), 1151–1157 | DOI | DOI