Weakly periodic ground states and Gibbs measures for the Ising model with competing interactions on the Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 507-516 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the notion of a weakly periodic configuration. For the Ising model with competing interactions, we describe the set of all weakly periodic ground states corresponding to normal divisors of indices $2$ and $4$ of the group representation of the Cayley tree. In addition, we study new Gibbs measures for the Ising model.
Keywords: Cayley tree, Gibbs measure, Ising model, weakly periodic ground state.
@article{TMF_2009_160_3_a5,
     author = {U. A. Rozikov and M. M. Rakhmatullaev},
     title = {Weakly periodic ground states and {Gibbs} measures for {the~Ising} model with competing interactions on {the~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {507--516},
     year = {2009},
     volume = {160},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a5/}
}
TY  - JOUR
AU  - U. A. Rozikov
AU  - M. M. Rakhmatullaev
TI  - Weakly periodic ground states and Gibbs measures for the Ising model with competing interactions on the Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 507
EP  - 516
VL  - 160
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a5/
LA  - ru
ID  - TMF_2009_160_3_a5
ER  - 
%0 Journal Article
%A U. A. Rozikov
%A M. M. Rakhmatullaev
%T Weakly periodic ground states and Gibbs measures for the Ising model with competing interactions on the Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 507-516
%V 160
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a5/
%G ru
%F TMF_2009_160_3_a5
U. A. Rozikov; M. M. Rakhmatullaev. Weakly periodic ground states and Gibbs measures for the Ising model with competing interactions on the Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 507-516. http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a5/

[1] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | MR | Zbl

[2] R. A. Minlos, Introduction to Mathematical Statistical Physics, Univ. Lecture Ser., 19, AMS, Providence, RI, 2000 | MR | Zbl

[3] U. A. Rozikov, M. M. Rakhmatullaev, TMF, 156:2 (2008), 292–302 | DOI | MR | Zbl

[4] S. Katsura, M. Takizawa, Progr. Theoret. Phys., 51:1 (1974), 82–98 | DOI

[5] N. N. Ganikhodzhaev, U. A. Rozikov, Uzb. matem. zhurn., 2 (1995), 36–47 | MR

[6] X. A. Nazarov, U. A. Rozikov, TMF, 135:3 (2003), 515–523 | DOI | MR | Zbl

[7] U. A. Rozikov, J. Statist. Phys., 122:2 (2006), 217–235 | DOI | MR | Zbl

[8] C. J. Preston, Gibbs States on Countable Sets, Cambridge Tracts Math., 68, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl

[9] H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Stud. Math., 9, Walter de Gruyter, Berlin, 1988 | MR | Zbl

[10] Y. Higuchi, Publ. Res. Inst. Math. Sci., 13:2 (1977), 335–348 | DOI | MR | Zbl

[11] P. M. Bleher, J. Ruiz, V. A. Zagrebnov, J. Statist. Phys., 79:1–2 (1995), 473–482 | DOI | MR | Zbl

[12] D. Ioffe, Lett. Math. Phys., 37:2 (1996), 137–143 | DOI | MR | Zbl

[13] F. Spitzer, Ann. Probab., 3:3 (1975), 387–398 | DOI | MR | Zbl

[14] S. Zachary, Ann. Probab., 11:4 (1983), 894–903 | DOI | MR | Zbl

[15] S. Zachary, Stochastic Process. Appl., 20:2 (1985), 247–256 | DOI | MR | Zbl

[16] U. A. Rozikov, Yu. M. Suhov, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9:3 (2006), 471–488 | DOI | MR | Zbl

[17] U. A. Rozikov, J. Statist. Phys., 130:4 (2008), 801–813 | DOI | MR | Zbl