@article{TMF_2009_160_3_a5,
author = {U. A. Rozikov and M. M. Rakhmatullaev},
title = {Weakly periodic ground states and {Gibbs} measures for {the~Ising} model with competing interactions on {the~Cayley} tree},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {507--516},
year = {2009},
volume = {160},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a5/}
}
TY - JOUR AU - U. A. Rozikov AU - M. M. Rakhmatullaev TI - Weakly periodic ground states and Gibbs measures for the Ising model with competing interactions on the Cayley tree JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 507 EP - 516 VL - 160 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a5/ LA - ru ID - TMF_2009_160_3_a5 ER -
%0 Journal Article %A U. A. Rozikov %A M. M. Rakhmatullaev %T Weakly periodic ground states and Gibbs measures for the Ising model with competing interactions on the Cayley tree %J Teoretičeskaâ i matematičeskaâ fizika %D 2009 %P 507-516 %V 160 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a5/ %G ru %F TMF_2009_160_3_a5
U. A. Rozikov; M. M. Rakhmatullaev. Weakly periodic ground states and Gibbs measures for the Ising model with competing interactions on the Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 507-516. http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a5/
[1] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | MR | Zbl
[2] R. A. Minlos, Introduction to Mathematical Statistical Physics, Univ. Lecture Ser., 19, AMS, Providence, RI, 2000 | MR | Zbl
[3] U. A. Rozikov, M. M. Rakhmatullaev, TMF, 156:2 (2008), 292–302 | DOI | MR | Zbl
[4] S. Katsura, M. Takizawa, Progr. Theoret. Phys., 51:1 (1974), 82–98 | DOI
[5] N. N. Ganikhodzhaev, U. A. Rozikov, Uzb. matem. zhurn., 2 (1995), 36–47 | MR
[6] X. A. Nazarov, U. A. Rozikov, TMF, 135:3 (2003), 515–523 | DOI | MR | Zbl
[7] U. A. Rozikov, J. Statist. Phys., 122:2 (2006), 217–235 | DOI | MR | Zbl
[8] C. J. Preston, Gibbs States on Countable Sets, Cambridge Tracts Math., 68, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl
[9] H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Stud. Math., 9, Walter de Gruyter, Berlin, 1988 | MR | Zbl
[10] Y. Higuchi, Publ. Res. Inst. Math. Sci., 13:2 (1977), 335–348 | DOI | MR | Zbl
[11] P. M. Bleher, J. Ruiz, V. A. Zagrebnov, J. Statist. Phys., 79:1–2 (1995), 473–482 | DOI | MR | Zbl
[12] D. Ioffe, Lett. Math. Phys., 37:2 (1996), 137–143 | DOI | MR | Zbl
[13] F. Spitzer, Ann. Probab., 3:3 (1975), 387–398 | DOI | MR | Zbl
[14] S. Zachary, Ann. Probab., 11:4 (1983), 894–903 | DOI | MR | Zbl
[15] S. Zachary, Stochastic Process. Appl., 20:2 (1985), 247–256 | DOI | MR | Zbl
[16] U. A. Rozikov, Yu. M. Suhov, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9:3 (2006), 471–488 | DOI | MR | Zbl
[17] U. A. Rozikov, J. Statist. Phys., 130:4 (2008), 801–813 | DOI | MR | Zbl