Weakly periodic ground states and Gibbs measures for the~Ising model with competing interactions on the~Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 507-516

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of a weakly periodic configuration. For the Ising model with competing interactions, we describe the set of all weakly periodic ground states corresponding to normal divisors of indices $2$ and $4$ of the group representation of the Cayley tree. In addition, we study new Gibbs measures for the Ising model.
Keywords: Cayley tree, Gibbs measure, Ising model, weakly periodic ground state.
@article{TMF_2009_160_3_a5,
     author = {U. A. Rozikov and M. M. Rakhmatullaev},
     title = {Weakly periodic ground states and {Gibbs} measures for {the~Ising} model with competing interactions on {the~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {507--516},
     publisher = {mathdoc},
     volume = {160},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a5/}
}
TY  - JOUR
AU  - U. A. Rozikov
AU  - M. M. Rakhmatullaev
TI  - Weakly periodic ground states and Gibbs measures for the~Ising model with competing interactions on the~Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 507
EP  - 516
VL  - 160
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a5/
LA  - ru
ID  - TMF_2009_160_3_a5
ER  - 
%0 Journal Article
%A U. A. Rozikov
%A M. M. Rakhmatullaev
%T Weakly periodic ground states and Gibbs measures for the~Ising model with competing interactions on the~Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 507-516
%V 160
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a5/
%G ru
%F TMF_2009_160_3_a5
U. A. Rozikov; M. M. Rakhmatullaev. Weakly periodic ground states and Gibbs measures for the~Ising model with competing interactions on the~Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 507-516. http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a5/