Quantum Birkhoff normal forms
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 487-506 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider quantum analogues of several theorems on Birkhoff normal forms and prove a quantum analogue of the theorem on reducing a Hamiltonian to the normal form and the analogue of the theorem on reducing a Hamiltonian to the real normal form. We obtain the normal form explicitly in the nonresonant case. We consider the uniqueness problems of the normal form and of the normalizing transformation in the nonresonant and resonant cases.
Keywords: Birkhoff normal form
Mots-clés : quantum analogue, algebra of observables, automorphism.
@article{TMF_2009_160_3_a4,
     author = {A. Yu. Anikin},
     title = {Quantum {Birkhoff} normal forms},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {487--506},
     year = {2009},
     volume = {160},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a4/}
}
TY  - JOUR
AU  - A. Yu. Anikin
TI  - Quantum Birkhoff normal forms
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 487
EP  - 506
VL  - 160
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a4/
LA  - ru
ID  - TMF_2009_160_3_a4
ER  - 
%0 Journal Article
%A A. Yu. Anikin
%T Quantum Birkhoff normal forms
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 487-506
%V 160
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a4/
%G ru
%F TMF_2009_160_3_a4
A. Yu. Anikin. Quantum Birkhoff normal forms. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 487-506. http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a4/

[1] Dzh. D. Birkgof, Dinamicheskie sistemy, Gostekhizdat, M., 1941 | MR | Zbl

[2] T. M. Cherry, Proc. London Math. Soc., 27:2 (1927), 151–170 | MR | Zbl

[3] J. Moser, Comm. Pure Appl. Math., 9:4 (1956), 673–692 | DOI | MR | Zbl

[4] A. D. Bryuno, Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR | MR | Zbl

[5] D. Treschev, Tr. MIAN, 250 (2005), 226–261 | MR | Zbl

[6] D. V. Treschev, Tr. MIAN, 259 (2007), 203–242 | DOI | MR | Zbl

[7] Yu. V. Egorov, UMN, 24:5(149) (1969), 235–236 | MR | Zbl

[8] J. J. Duistermaat, L. Hörmander, Acta Math., 128:1 (1972), 183–269 | DOI | MR | Zbl

[9] L. Hörmander, Acta Math., 127:1 (1971), 79–183 | DOI | MR | Zbl

[10] J. Bellissard, M. Vittot, Ann. Inst. H. Poincaré Phys. Théor., 52:3 (1990), 175–235 | MR | Zbl

[11] J. Sjöstrand, Asymptotic Anal., 6:1 (1992), 29–43 | MR | Zbl

[12] C. Gérard, J. Sjöstrand, Comm. Math. Phys., 108:3 (1987), 391–421 | DOI | MR | Zbl

[13] J. Sjöstrand, Asymptotic Anal., 36:2 (2003), 93–113 | MR | Zbl

[14] N. Kaidi, P. Kerdelhuré, Asymptot. Anal., 23:1 (2000), 1–21 | MR | Zbl

[15] A. Iantchenko, J. Sjöstrand, Amer. J. Math., 124:4 (2002), 817–850 | DOI | MR | Zbl

[16] A. Anikin, Regul. Chaotic Dyn., 13:5 (2008), 377–402 | DOI | MR | Zbl

[17] M. Karasev, “Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances”, Quantum Algebras and Poisson Geometry in Mathematical Physics, AMS Transl. Ser. 2, 216, ed. M. V. Karasev, AMS, Providence, RI, 2005, 1–17 ; Adv. Stud. Contemp. Math., 11 (2005), 33–56 ; Russ. J. Math. Phys., 13:2 (2006), 131–150 | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[18] M. V. Karasev, V. P. Maslov, UMN, 39:6(240) (1984), 115–173 | MR | Zbl