Discrete Toda lattices and the~Laplace method
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 434-443

Voir la notice de l'article provenant de la source Math-Net.Ru

We apply the Laplace cascade method to systems of discrete equations of the form $u_{i+1,j+1}=f(u_{i+1,j}, u_{i,j+1},u_{i,j}, u_{i,j-1})$, where $u_{ij}$, $i,j\in\mathbb Z$, is an element of a sequence of unknown vectors. We introduce the concept of a generalized Laplace invariant and the related property that the systems is “of the Liouville type”. We prove a series of statements about the correctness of the definition of the generalized invariant and its applicability for seeking solutions and integrals of the system. We give some examples of systems of the Liouville type.
Keywords: nonlinear discrete equation, Laplace method, Darboux integrability.
@article{TMF_2009_160_3_a1,
     author = {V. L. Vereshchagin},
     title = {Discrete {Toda} lattices and {the~Laplace} method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {434--443},
     publisher = {mathdoc},
     volume = {160},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a1/}
}
TY  - JOUR
AU  - V. L. Vereshchagin
TI  - Discrete Toda lattices and the~Laplace method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 434
EP  - 443
VL  - 160
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a1/
LA  - ru
ID  - TMF_2009_160_3_a1
ER  - 
%0 Journal Article
%A V. L. Vereshchagin
%T Discrete Toda lattices and the~Laplace method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 434-443
%V 160
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a1/
%G ru
%F TMF_2009_160_3_a1
V. L. Vereshchagin. Discrete Toda lattices and the~Laplace method. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 434-443. http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a1/