Resultant as the determinant of a Koszul complex
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 403-433 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The determinant is a very important characteristic of a linear map between vector spaces. Two generalizations of linear maps are intensively used in modern theory: linear complexes (nilpotent chains of linear maps) and nonlinear maps. The determinant of a complex and the resultant are then the corresponding generalizations of the determinant of a linear map. It turns out that these two quantities are related: the resultant of a nonlinear map is the determinant of the corresponding Koszul complex. We give an elementary introduction into these notions and relations, which will definitely play a role in the future development of theoretical physics.
Keywords: resultant, nonlinear algebra.
Mots-clés : Koszul complex
@article{TMF_2009_160_3_a0,
     author = {A. S. Anokhina and A. Yu. Morozov and Sh. R. Shakirov},
     title = {Resultant as the~determinant of {a~Koszul} complex},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {403--433},
     year = {2009},
     volume = {160},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a0/}
}
TY  - JOUR
AU  - A. S. Anokhina
AU  - A. Yu. Morozov
AU  - Sh. R. Shakirov
TI  - Resultant as the determinant of a Koszul complex
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 403
EP  - 433
VL  - 160
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a0/
LA  - ru
ID  - TMF_2009_160_3_a0
ER  - 
%0 Journal Article
%A A. S. Anokhina
%A A. Yu. Morozov
%A Sh. R. Shakirov
%T Resultant as the determinant of a Koszul complex
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 403-433
%V 160
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a0/
%G ru
%F TMF_2009_160_3_a0
A. S. Anokhina; A. Yu. Morozov; Sh. R. Shakirov. Resultant as the determinant of a Koszul complex. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 403-433. http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a0/

[1] A. Jennings, Bull. Inst. Math. Appl., 13:5 (1977), 117–123 | MR

[2] E. G. Forbes, Historia Math., 5:2 (1978), 167–181 | DOI | MR | Zbl

[3] “On the theory of elimination”, The Collected Mathematical Papers of Arthur Cayley, V. I, The University Press, Cambridge, 1888, 370–375 ; F. S. Macaulay, Proc. London Math. Soc., 35:1 (1903), 3–27 ; A. L. Dixon, Proc. London Math. Soc., 6 (1908), 468–478 ; General Theory of Algebraic Equations, Princeton Univ. Press, Princeton, NJ, 2006 | MR | Zbl | MR | Zbl | DOI | Zbl | MR | Zbl

[4] “A method of determining by mere inspection the derivatives from two equations of any degree”, The Collected Mathematical Papers of James Joseph Sylvester, V. I, The University Press, Cambridge, 1904, 54–57 | Zbl

[5] I. M. Gel'fand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Math. Theory Appl., Birkhäuser, Boston, MA, 1994 | MR | Zbl

[6] V. Dolotin, A. Morozov, Introduction to Non-Linear Algebra, World Scientific, Hackensack, NJ, 2007 | MR | Zbl

[7] A. Miyake, M. Wadati, Quant. Info. Comp., 2, Special (2002), 540–555 ; ; M. Duff, Phys. Rev. D, 76:2 (2007), 025017 ; ; Phys. Lett. B, 641:3–4 (2006), 335–337 ; ; R. Kallosh, A. Linde, Phys. Rev. D, 73:10 (2006), 104033 ; arXiv: quant-ph/0212146arXiv: hep-th/0601134arXiv: hep-th/0602160arXiv: hep-th/0602061 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[8] S. Kachru, A. Klemm, W. Lerche, P. Mayr, C. Vafa, Nucl. Phys. B, 459:3 (1996), 537–558 ; ; T. Eguchi, Y. Tachikawa, JHEP, 08 (2007), 068 ; ; P. S. Aspinwall, B. R. Greene, D. R. Morrison, Nucl. Phys. B, 420:1–2 (1994), 184–242 ; arXiv: hep-th/9508155arXiv: hep-th/0706.2114arXiv: hep-th/9311042 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[9] A. Morozov, A. J. Niemi, Nucl. Phys. B, 666:3 (2003), 311–336 ; ; V. Dolotin, A. Morozov, The Universal Mandelbrot Set. Beginning of the Story, World Sci., Hackensack, NJ, 2006 ; Algebraic geometry of discrete dynamics: the case of one variable, ; Internat. J. Modern Phys. A, 23:22 (2008), 3613–3684 ; ; A. Morozov, Письма в ЖЭТФ, 86:11 (2007), 856–859 ; arXiv: hep-th/0304178arXiv: hep-th/0501235arXiv: hep-th/0701234arXiv: 0710.2315 | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI

[10] D. Manocha, Algebraic and numeric techniques for modeling and robotics, Ph. D. thesis, Univ. California, Berkeley, 1992

[11] A. Morozov, Sh. Shakirov, Resultants and contour integrals, arXiv: 0807.4539 | MR

[12] B. Gustafsson, V. G. Tkachev, Comm. Math. Phys., 286:1 (2009), 313–358 ; arXiv: 0710.2326 | DOI | MR | Zbl

[13] E. Witten, Comm. Math. Phys., 118:3 (1988), 411–449 ; Mirror manifolds and topological field theory, ; A. Losev, I. Polyubin, Internat. J. Modern Phys. A, 10:29 (1995), 4161–4178 ; ; M. Alexandrov, A. Schwarz, O. Zaboronsky, M. Kontsevich, Internat. J. Modern Phys. A, 12:7 (1997), 1405–1429 ; ; A. Losev, N. Nekrasov, S. Shatashvili, Nucl. Phys. B, 534:3 (1998), 549–611 ; arXiv: hep-th/9112056arXiv: hep-th/9305079arXiv: hep-th/9502010arXiv: hep-th/9711108 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[14] L. D. Faddeev, V. N. Popov, Phys. Lett. B, 25:1 (1967), 29–30 ; I. V. Tyutin, Gauge invariance in field theory and statistical physics in operator formalism, Preprint No 39, P. N. Lebedev Phys. Inst., 1975; ; R. Stora, “Algebraic structure and topological origin of anomalies”, Progress in Gauge Field Theory, NATO Adv. Sci. Inst. Ser. B, 115, eds. G. 't Hooft, A. Jaffe, H. Lehmann, P. K. Mitter, I. M. Singer, R. Stora, Plenum Press, New York, 1984, 543–562 ; I. A. Batalin, G. A. Vilkoviski, Nucl. Phys. B, 234:1 (1984), 106–124 ; A. Schwarz, Comm. Math. Phys., 155:2 (1993), 249–260 ; arXiv: 0812.0580arXiv: hep-th/9205088 | DOI | MR | DOI | MR | DOI | MR | Zbl

[15] M. Douglas, J. Math. Phys., 42:7 (2001), 2818–2843 ; ; G. Moore, Internat. J. Modern Phys. A, 16:5 (2001), 936–944 ; C. I. Lazaroiu, JHEP, 12 (2001), 031 ; ; D.-E. Diaconescu, JHEP, 06 (2001), 016 ; ; A. Kapustin, D. Orlov, J. Geom. Phys., 48:1 (2003), 84–99 ; ; J. Distler, H. Jockers, H. Park, $D$-brane monodromies, derived categories and boundary linear sigma models, ; Sh. Katz, E. Sharpe, Adv. Theor. Math. Phys., 6:6 (2003), 979–1030 ; ; P. S. Aspinwall, “$D$-branes on Calabi–Yau manifolds”, Progress in String Theory, ed. J. M. Maldacena, World Sci., Hackensack, NJ, 2005, 1–152 ; ; O. Lechtenfeld, A. D. Popov, R. J. Szabo, JHEP, 09 (2006), 054 ; ; A. Kapustin, E. Witten, Commun. Number Theory Phys., 1:1 (2007), 1–236 ; arXiv: hep-th/0011017arXiv: hep-th/0102183arXiv: hep-th/0104200arXiv: hep-th/0109098arXiv: hep-th/0206242arXiv: hep-th/0208104arXiv: hep-th/0403166arXiv: hep-th/0603232arXiv: hep-th/0604151 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[16] A. Morozov, Sh. Shakirov, Analogue of the identity Log Det = Trace Log for resultants, arXiv: 0804.4632 | MR

[17] D. Eisenbud, F.-O. Schreyer, J. Amer. Math. Soc., 16:3 (2003), 537–579 ; arXiv: math/0111040 | DOI | MR | Zbl

[18] C. D'Andrea, A. Dickenstein, J. Pure Appl. Algebra, 164:1–2 (2001), 59–86 ; ; M. Chardin, C. R. Acad. Sci. Paris, 319:5 (1994), 433–436 ; D. Manocha, J. F. Canny, J. Symbolic Computation, 15:2 (1993), 99–122 ; J. Canny, E. Kaltofen, L. Yagati, “Solving systems of non-linear polynomial equations faster”, Proc. ACM–SIGSAM 1989 Int. Symp. Symbolic Algebraic Comput., ed. G. H. Gonnet, ACM, New York, 1989, 121–128 arXiv: math/0007036 | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI

[19] A. Ostrowski, Arch. Math., 29:3 (1977), 252–260 ; L. Busé, C. D'Andrea, C. R. Math. Acad. Sci. Paris, 338:4 (2004), 287–290 ; arXiv: math.AG/0309374 | DOI | MR | Zbl | DOI | MR | Zbl

[20] A. I. Kostrikin, Vvedenie v algebru, Nauka, M., 1977 | MR | MR | Zbl

[21] A. Morozov, Sh. Shakirov, Introduction to integral discriminants, arXiv: 0903.2595 | MR