Resultant as the~determinant of a~Koszul complex
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 403-433

Voir la notice de l'article provenant de la source Math-Net.Ru

The determinant is a very important characteristic of a linear map between vector spaces. Two generalizations of linear maps are intensively used in modern theory: linear complexes (nilpotent chains of linear maps) and nonlinear maps. The determinant of a complex and the resultant are then the corresponding generalizations of the determinant of a linear map. It turns out that these two quantities are related: the resultant of a nonlinear map is the determinant of the corresponding Koszul complex. We give an elementary introduction into these notions and relations, which will definitely play a role in the future development of theoretical physics.
Keywords: resultant, nonlinear algebra.
Mots-clés : Koszul complex
@article{TMF_2009_160_3_a0,
     author = {A. S. Anokhina and A. Yu. Morozov and Sh. R. Shakirov},
     title = {Resultant as the~determinant of {a~Koszul} complex},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {403--433},
     publisher = {mathdoc},
     volume = {160},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a0/}
}
TY  - JOUR
AU  - A. S. Anokhina
AU  - A. Yu. Morozov
AU  - Sh. R. Shakirov
TI  - Resultant as the~determinant of a~Koszul complex
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 403
EP  - 433
VL  - 160
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a0/
LA  - ru
ID  - TMF_2009_160_3_a0
ER  - 
%0 Journal Article
%A A. S. Anokhina
%A A. Yu. Morozov
%A Sh. R. Shakirov
%T Resultant as the~determinant of a~Koszul complex
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 403-433
%V 160
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a0/
%G ru
%F TMF_2009_160_3_a0
A. S. Anokhina; A. Yu. Morozov; Sh. R. Shakirov. Resultant as the~determinant of a~Koszul complex. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 403-433. http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a0/