Resultant as the~determinant of a~Koszul complex
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 403-433
Voir la notice de l'article provenant de la source Math-Net.Ru
The determinant is a very important characteristic of a linear map between vector spaces. Two generalizations of linear maps are intensively used in modern theory: linear complexes (nilpotent chains of linear maps) and nonlinear maps. The determinant of a complex and the resultant are then the corresponding generalizations of the determinant of a linear map. It turns out that these two quantities are related: the resultant of a nonlinear map is the determinant of the corresponding Koszul complex. We give an elementary introduction into these notions and relations, which will definitely play a role in the future development of theoretical physics.
Keywords:
resultant, nonlinear algebra.
Mots-clés : Koszul complex
Mots-clés : Koszul complex
@article{TMF_2009_160_3_a0,
author = {A. S. Anokhina and A. Yu. Morozov and Sh. R. Shakirov},
title = {Resultant as the~determinant of {a~Koszul} complex},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {403--433},
publisher = {mathdoc},
volume = {160},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a0/}
}
TY - JOUR AU - A. S. Anokhina AU - A. Yu. Morozov AU - Sh. R. Shakirov TI - Resultant as the~determinant of a~Koszul complex JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 403 EP - 433 VL - 160 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a0/ LA - ru ID - TMF_2009_160_3_a0 ER -
A. S. Anokhina; A. Yu. Morozov; Sh. R. Shakirov. Resultant as the~determinant of a~Koszul complex. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 3, pp. 403-433. http://geodesic.mathdoc.fr/item/TMF_2009_160_3_a0/