Bogoliubov's metric as a global characteristic of the family of metrics in the Hilbert algebra of observables
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 2, pp. 352-369 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We comparatively analyze a one-parameter family of bilinear complex functionals with the sense of "deformed" Wigner–Yanase–Dyson scalar products on the Hilbert algebra of operators of physical observables. We establish that these functionals and the corresponding metrics depend on the deformation parameter and the extremal properties of the Kubo–Martin–Schwinger and Wigner–Yanase metrics in quantum statistical mechanics. We show that the Bogoliubov–Kubo–Mori metric is a global (integral) characteristic of this family. It occupies an intermediate position between the extremal metrics and has the clear physical sense of the generalized isothermal susceptibility. We consider the example for the $SU(2)$ algebra of observables in the simplest model of an ideal quantum spin paramagnet.
Keywords: operator metric, correlation function, Green's function, spectral intensity, uncertainty relation.
@article{TMF_2009_160_2_a8,
     author = {Yu. G. Rudoi},
     title = {Bogoliubov's metric as a~global characteristic of the~family of metrics in {the~Hilbert} algebra of observables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {352--369},
     year = {2009},
     volume = {160},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_2_a8/}
}
TY  - JOUR
AU  - Yu. G. Rudoi
TI  - Bogoliubov's metric as a global characteristic of the family of metrics in the Hilbert algebra of observables
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 352
EP  - 369
VL  - 160
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_2_a8/
LA  - ru
ID  - TMF_2009_160_2_a8
ER  - 
%0 Journal Article
%A Yu. G. Rudoi
%T Bogoliubov's metric as a global characteristic of the family of metrics in the Hilbert algebra of observables
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 352-369
%V 160
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_2_a8/
%G ru
%F TMF_2009_160_2_a8
Yu. G. Rudoi. Bogoliubov's metric as a global characteristic of the family of metrics in the Hilbert algebra of observables. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 2, pp. 352-369. http://geodesic.mathdoc.fr/item/TMF_2009_160_2_a8/

[1] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Osnovy aksiomaticheskogo podkhoda v kvantovoi teorii polya, Nauka, M., 1969 | MR | Zbl

[2] Zh. Emkh, Algebraicheskie metody v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976 | MR | Zbl

[3] U. Bratteli, D. Robinson, Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | MR | Zbl

[4] R. Rikhtmaier, Printsipy sovremennoi matematicheskoi fiziki, T. 1, Mir, M., 1982 | MR | MR | Zbl

[5] I. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR | MR | Zbl

[6] S. G. Krein (red.), Funktsionalnyi analiz, Spravochno-matematicheskaya biblioteka, Nauka, M., 1972 | MR | Zbl

[7] P. A. M. Dirak, Printsipy kvantovoi mekhaniki, Fizmatgiz, M., 1960 | MR | MR | Zbl

[8] N. N. Bogolyubov, “Lektsii po kvantovoi statistike”, Sobranie nauchnykh trudov v 12 tomakh, 6, Nauka, M., 2006, 9–235; | MR | Zbl

[9] L. D. Faddeev, O. A. Yakubovskii, Lektsii po kvantovoi mekhanike dlya studentov-matematikov, Izd-vo LGU, L., 1980 | MR | Zbl

[10] R. Kubo, J. Phys. Soc. Japan, 12:6 (1957), 570–602 ; Вопросы квантовой теории необратимых процессов, Проблемы физики, ред. В. Л. Бонч-Бруевич, ИЛ, М., 1961, 39–72 | DOI | MR

[11] P. C. Martin, J. Schwinger, Phys. Rev., 115:6 (1959), 1342–1373 | DOI | MR | Zbl

[12] E. P. Wigner, M. M. Yanase, Proc. Natl. Acad. Sci. USA, 49 (1963), 910–918 | DOI | MR | Zbl

[13] E. H. Lieb, Adv. Math., 11:3 (1973), 267–288 | DOI | MR | Zbl

[14] F. Bauman, R. Jost, “Remarks on a conjecture of Robinson and Ruelle concerning the quantum mechanical entropy”, Problemy teoreticheskoi fiziki (k 60-letiyu akad. N. N. Bogolyubova), ed. D. I. Blokhintsev, Nauka, M., 1969, 285–293 | MR | Zbl

[15] J. M. Luttinger, Progr. Theoret. Phys., Suppl. No. 37–38 (1966), 35–45 | DOI

[16] N. N. Bogolyubov, “Kvazisrednie v zadachakh statisticheskoi mekhaniki”, Sobranie nauchnykh trudov v 12 tomakh, 6, Nauka, M., 2006, 236–327 ; Н. Н. Боголюбов, Квазисредние в задачах статистической механики, Препринт Д-781, ОИЯИ, Дубна, 1961; Избранные труды по статистической физике, МГУ, М., 1979, 193–269 | MR

[17] N. N. Bogolyubov, S. V. Tyablikov, DAN SSSR, 126 (1959), 53–56 | MR | Zbl

[18] H. Mori, Progr. Theoret. Phys., 33:3 (1965), 423–455 | DOI | Zbl

[19] R. F. Streater, “The Information Manifold for Relatively Bounded Potentials”, Problemy sovremennoi matematicheskoi fiziki, Sb. statei K 90-letiyu so dnya rozhdeniya akademika N. N. Bogolyubova, Tr. MIAN, 228, Nauka, M., 2000, 217–235 | MR | Zbl

[20] H. B. Callen, T. A. Welton, Phys. Rev., 83:1 (1951), 34–40 | DOI | MR | Zbl

[21] V. L. Bonch-Bruevich, S. V. Tyablikov, Metod funktsii Grina v statisticheskoi mekhanike, Fizmatlit, M., 1961 | MR | Zbl

[22] D. N. Zubarev, Yu. A. Tserkovnikov, “Metod dvukhvremennykh temperaturnykh funktsii Grina v ravnovesnoi i neravnovesnoi statisticheskoi mekhanike”, Teoreticheskaya i matematicheskaya fizika, Tr. MIAN, 175, Nauka, M., 1986, 134–177 | MR | Zbl

[23] D. Ryuel, Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971 | MR | Zbl

[24] J. C. Garrison, J. Wong, Comm. Math. Phys., 26:1 (1972), 1–5 | DOI | MR

[25] G. Roepstorff, Comm. Math. Phys., 46:3 (1976), 253–262 | DOI | MR

[26] K. Khelstrom, Kvantovaya proverka gipotez i otsenivaniya, Mir, M., 1979

[27] A. S. Kholevo, Veroyatnostnye i statisticheskie aspekty kvantovoi teorii, IKI, Moskva–Izhevsk, 2003 | MR | MR | Zbl

[28] N. N. Chentsov, Statisticheskie reshayuschie pravila i optimalnye vyvody, Nauka, M., 1972 | MR | MR | Zbl

[29] S.-I. Amari, Differential Geometrical Methods in Statistics, Lecture Notes in Statist. Vol. 28, Springer, New York, 1985 | DOI | MR | Zbl

[30] E. A. Morozova, N. N. Chentsov, “Markovskaya invariantnaya geometriya na mnogoobraziyakh sostoyanii”, Itogi nauki i tekhniki. Ser. Sovrem. probl. matem., VINITI, M., 1990, 69–102 | MR | Zbl

[31] D. Petz, Linear Algebra Appl., 244 (1996), 81–96 | DOI | MR | Zbl

[32] H. Hasegawa, D. Petz, “Non-commutative extension of information geometry”, Quantum Communication, Computing and Measurement, ed. H. Hirota, A. S. Holevo, C. M. Caves, Plenum, New York, 1997, 109–118 | DOI | MR | Zbl

[33] D. Petz, G. Toth, Lett. Math. Phys., 27:3 (1993), 205–216 | DOI | MR | Zbl

[34] Sh. L. Luo, TMF, 143:2 (2005), 231–240 | DOI | MR | Zbl

[35] A. D. Sukhanov, Yu. G. Rudoy, “The geometrical aspects of the equilibrium statistical thermodynamics”, Proc. of the 5-th Int. Conf. “Bolyai–Gauss–Lobachevsky” (BGL-5) (Minsk, 10–13 Oct. 2006), eds. Yu. Kurochkin, V. Red'kov, Minsk, 2006, 63–75; http://dragon.bas-net.by/bgl5/proc.htm