@article{TMF_2009_160_2_a8,
author = {Yu. G. Rudoi},
title = {Bogoliubov's metric as a~global characteristic of the~family of metrics in {the~Hilbert} algebra of observables},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {352--369},
year = {2009},
volume = {160},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_2_a8/}
}
TY - JOUR AU - Yu. G. Rudoi TI - Bogoliubov's metric as a global characteristic of the family of metrics in the Hilbert algebra of observables JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 352 EP - 369 VL - 160 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2009_160_2_a8/ LA - ru ID - TMF_2009_160_2_a8 ER -
%0 Journal Article %A Yu. G. Rudoi %T Bogoliubov's metric as a global characteristic of the family of metrics in the Hilbert algebra of observables %J Teoretičeskaâ i matematičeskaâ fizika %D 2009 %P 352-369 %V 160 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2009_160_2_a8/ %G ru %F TMF_2009_160_2_a8
Yu. G. Rudoi. Bogoliubov's metric as a global characteristic of the family of metrics in the Hilbert algebra of observables. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 2, pp. 352-369. http://geodesic.mathdoc.fr/item/TMF_2009_160_2_a8/
[1] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Osnovy aksiomaticheskogo podkhoda v kvantovoi teorii polya, Nauka, M., 1969 | MR | Zbl
[2] Zh. Emkh, Algebraicheskie metody v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976 | MR | Zbl
[3] U. Bratteli, D. Robinson, Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | MR | Zbl
[4] R. Rikhtmaier, Printsipy sovremennoi matematicheskoi fiziki, T. 1, Mir, M., 1982 | MR | MR | Zbl
[5] I. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR | MR | Zbl
[6] S. G. Krein (red.), Funktsionalnyi analiz, Spravochno-matematicheskaya biblioteka, Nauka, M., 1972 | MR | Zbl
[7] P. A. M. Dirak, Printsipy kvantovoi mekhaniki, Fizmatgiz, M., 1960 | MR | MR | Zbl
[8] N. N. Bogolyubov, “Lektsii po kvantovoi statistike”, Sobranie nauchnykh trudov v 12 tomakh, 6, Nauka, M., 2006, 9–235; | MR | Zbl
[9] L. D. Faddeev, O. A. Yakubovskii, Lektsii po kvantovoi mekhanike dlya studentov-matematikov, Izd-vo LGU, L., 1980 | MR | Zbl
[10] R. Kubo, J. Phys. Soc. Japan, 12:6 (1957), 570–602 ; Вопросы квантовой теории необратимых процессов, Проблемы физики, ред. В. Л. Бонч-Бруевич, ИЛ, М., 1961, 39–72 | DOI | MR
[11] P. C. Martin, J. Schwinger, Phys. Rev., 115:6 (1959), 1342–1373 | DOI | MR | Zbl
[12] E. P. Wigner, M. M. Yanase, Proc. Natl. Acad. Sci. USA, 49 (1963), 910–918 | DOI | MR | Zbl
[13] E. H. Lieb, Adv. Math., 11:3 (1973), 267–288 | DOI | MR | Zbl
[14] F. Bauman, R. Jost, “Remarks on a conjecture of Robinson and Ruelle concerning the quantum mechanical entropy”, Problemy teoreticheskoi fiziki (k 60-letiyu akad. N. N. Bogolyubova), ed. D. I. Blokhintsev, Nauka, M., 1969, 285–293 | MR | Zbl
[15] J. M. Luttinger, Progr. Theoret. Phys., Suppl. No. 37–38 (1966), 35–45 | DOI
[16] N. N. Bogolyubov, “Kvazisrednie v zadachakh statisticheskoi mekhaniki”, Sobranie nauchnykh trudov v 12 tomakh, 6, Nauka, M., 2006, 236–327 ; Н. Н. Боголюбов, Квазисредние в задачах статистической механики, Препринт Д-781, ОИЯИ, Дубна, 1961; Избранные труды по статистической физике, МГУ, М., 1979, 193–269 | MR
[17] N. N. Bogolyubov, S. V. Tyablikov, DAN SSSR, 126 (1959), 53–56 | MR | Zbl
[18] H. Mori, Progr. Theoret. Phys., 33:3 (1965), 423–455 | DOI | Zbl
[19] R. F. Streater, “The Information Manifold for Relatively Bounded Potentials”, Problemy sovremennoi matematicheskoi fiziki, Sb. statei K 90-letiyu so dnya rozhdeniya akademika N. N. Bogolyubova, Tr. MIAN, 228, Nauka, M., 2000, 217–235 | MR | Zbl
[20] H. B. Callen, T. A. Welton, Phys. Rev., 83:1 (1951), 34–40 | DOI | MR | Zbl
[21] V. L. Bonch-Bruevich, S. V. Tyablikov, Metod funktsii Grina v statisticheskoi mekhanike, Fizmatlit, M., 1961 | MR | Zbl
[22] D. N. Zubarev, Yu. A. Tserkovnikov, “Metod dvukhvremennykh temperaturnykh funktsii Grina v ravnovesnoi i neravnovesnoi statisticheskoi mekhanike”, Teoreticheskaya i matematicheskaya fizika, Tr. MIAN, 175, Nauka, M., 1986, 134–177 | MR | Zbl
[23] D. Ryuel, Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971 | MR | Zbl
[24] J. C. Garrison, J. Wong, Comm. Math. Phys., 26:1 (1972), 1–5 | DOI | MR
[25] G. Roepstorff, Comm. Math. Phys., 46:3 (1976), 253–262 | DOI | MR
[26] K. Khelstrom, Kvantovaya proverka gipotez i otsenivaniya, Mir, M., 1979
[27] A. S. Kholevo, Veroyatnostnye i statisticheskie aspekty kvantovoi teorii, IKI, Moskva–Izhevsk, 2003 | MR | MR | Zbl
[28] N. N. Chentsov, Statisticheskie reshayuschie pravila i optimalnye vyvody, Nauka, M., 1972 | MR | MR | Zbl
[29] S.-I. Amari, Differential Geometrical Methods in Statistics, Lecture Notes in Statist. Vol. 28, Springer, New York, 1985 | DOI | MR | Zbl
[30] E. A. Morozova, N. N. Chentsov, “Markovskaya invariantnaya geometriya na mnogoobraziyakh sostoyanii”, Itogi nauki i tekhniki. Ser. Sovrem. probl. matem., VINITI, M., 1990, 69–102 | MR | Zbl
[31] D. Petz, Linear Algebra Appl., 244 (1996), 81–96 | DOI | MR | Zbl
[32] H. Hasegawa, D. Petz, “Non-commutative extension of information geometry”, Quantum Communication, Computing and Measurement, ed. H. Hirota, A. S. Holevo, C. M. Caves, Plenum, New York, 1997, 109–118 | DOI | MR | Zbl
[33] D. Petz, G. Toth, Lett. Math. Phys., 27:3 (1993), 205–216 | DOI | MR | Zbl
[34] Sh. L. Luo, TMF, 143:2 (2005), 231–240 | DOI | MR | Zbl
[35] A. D. Sukhanov, Yu. G. Rudoy, “The geometrical aspects of the equilibrium statistical thermodynamics”, Proc. of the 5-th Int. Conf. “Bolyai–Gauss–Lobachevsky” (BGL-5) (Minsk, 10–13 Oct. 2006), eds. Yu. Kurochkin, V. Red'kov, Minsk, 2006, 63–75; http://dragon.bas-net.by/bgl5/proc.htm