Principle of stationary action in the theory of superfluid systems with spontaneously broken translational symmetry
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 2, pp. 333-351 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a Lagrangian describing the low-frequency dynamics of a system with spontaneously broken phase and translational symmetry (a supersolid). Using the principle of stationary action, we obtain the hydrodynamic equations for the considered system. We give a relativistic generalization of the obtained equations of motion in terms of the Gibbs thermodynamic potential density.
Keywords: Lagrangian, superfluidity, lattice, equation of motion, relativistic invariance.
Mots-clés : hydrodynamic equation
@article{TMF_2009_160_2_a7,
     author = {A. S. Peletminskii and S. V. Peletminskii},
     title = {Principle of stationary action in the~theory of superfluid systems with spontaneously broken translational symmetry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {333--351},
     year = {2009},
     volume = {160},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_2_a7/}
}
TY  - JOUR
AU  - A. S. Peletminskii
AU  - S. V. Peletminskii
TI  - Principle of stationary action in the theory of superfluid systems with spontaneously broken translational symmetry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 333
EP  - 351
VL  - 160
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_2_a7/
LA  - ru
ID  - TMF_2009_160_2_a7
ER  - 
%0 Journal Article
%A A. S. Peletminskii
%A S. V. Peletminskii
%T Principle of stationary action in the theory of superfluid systems with spontaneously broken translational symmetry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 333-351
%V 160
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_2_a7/
%G ru
%F TMF_2009_160_2_a7
A. S. Peletminskii; S. V. Peletminskii. Principle of stationary action in the theory of superfluid systems with spontaneously broken translational symmetry. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 2, pp. 333-351. http://geodesic.mathdoc.fr/item/TMF_2009_160_2_a7/

[1] L. D. Landau, J. Phys. USSR, 5 (1941), 71–90

[2] I. M. Khalatnikov, Vvedenie v teoriyu sverkhtekuchesti, URSS, M., 1965 | MR

[3] N. N. Bogoliubov, J. Phys. USSR, 11 (1947), 23–32 | MR

[4] N. N. Bogolyubov, Kvazisrednie v zadachakh statisticheskoi mekhaniki, Preprint D-781, OIYaI, Dubna, 1961; Избранные труды по статистической физике, МГУ, М., 1979, 193–269 | MR

[5] N. Bogolubov, Physica, 26, Suppl. 1 (1960), S1–S16 | DOI

[6] N. N. Bogolyubov, Lectures on Quantum Statistics. V. II, Gordon and Breach, New York, 1970 | MR

[7] N. N. Bogolyubov, K voprosu o gidrodinamike sverkhtekuchei zhidkosti, Preprint P-1395, OIYaI, Dubna, 1963; Избранные труды, Т. 3, Наукова думка, Киев, 1971, 244–281 | MR | Zbl

[8] S. V. Peletminskii, A. I. Sokolovskii, V. S. Schelokov, TMF, 30:1 (1977), 57–72 | DOI

[9] S. V. Peletminskii, A. I. Sokolovskii, V. S. Schelokov, TMF, 34:1 (1978), 81–98 | DOI | MR

[10] A. F. Andreev, I. M. Lifshits, ZhETF, 56:6 (1969), 2057–2068

[11] N. Prokof'ev, Adv. Phys., 56:2 (2007), 381–402 | DOI

[12] W. M. Saslow, Phys. Rev. B, 15:1 (1977), 173–186 | DOI | MR

[13] M. Liu, Phys. Rev. B, 18:3 (1978), 1165–1176 | DOI

[14] N. M. Lavrinenko, S. V. Peletminskii, TMF, 66:2 (1986), 314–325 | DOI | MR

[15] V. V. Lebedev, I. M. Khalatnikov, Pisma v ZhETF, 28:2 (1978), 89–93

[16] I. E. Dzyaloshinskii, G. E. Volovick, Ann. Phys., 125:1 (1980), 67–97 | DOI | MR

[17] D. D. Holm, B. A. Kupershmidt, Phys. Lett. A, 91:9 (1982), 425–430 | DOI | MR

[18] A. A. Isaev, M. Yu. Kovalevskii, S. V. Peletminskii, EChAYa, 27:2 (1996), 431–492 | DOI

[19] M. Greiter, F. Wilczek, E. Witten, Modern Phys. Lett. B, 3:12 (1989), 903–918 | DOI

[20] D. T. Son, Phys. Rev. Lett., 94:17 (2005), 175301 | DOI

[21] A. S. Peletminskii, S. V. Peletminskii, Phys. Lett. A, 373:1 (2008), 160–164 | DOI | Zbl

[22] A. S. Peletminskii, J. Phys. A, 42:4 (2009), 045501 | DOI | MR | Zbl

[23] A. S. Peletminskii, S. V. Peletminskii, Yu. V. Slyusarenko, TMF, 125:1 (2000), 152–176 | DOI | MR | Zbl

[24] N. N. Bogolyubov (ml.), M. Yu. Kovalevskii, A. M. Kurbatov, S. V. Peletminskii, A. N. Tarasov, UFN, 159:4 (1989), 585–620 | DOI | MR

[25] M. Yu. Kovalevskii, S. V. Peletminskii, Statisticheskaya mekhanika kvantovykh zhidkostei i kristallov, Fizmatlit, M., 2006

[26] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. II. Teoriya polya, Fizmatlit, M., 1967 | MR | MR | Zbl

[27] B. Carter, “Regular and anomalous heat conduction: The canonical diffusion equation in relativistic thermodynamics”, Journeés Relativistes – 1976, eds. M. Cahen, R. Debever, J. Geheniau, Université Libre de Bruxelles, Brussells, 1976, 12–27; “Generalized mass variation formula for a stationary axisymmetric star or black hole with surrounding accretion disc”, Journeés Relativistes – 1979, eds. I. Moret-Baily, C. Latremoliére, Faculté des Sciences, Anger, 1979, 166–182

[28] V. V. Lebedev, I. M. Khalatnikov, ZhETF, 83:5 (1982), 1601–1614

[29] D. T. Son, Internat. J. Modern Phys. A, 16, Suppl. 1c (2001), 1284–1286 | DOI

[30] M. E. Gusakov, Phys. Rev. D, 76:8 (2007), 083001 | DOI

[31] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. VI. Gidrodinamika, Nauka, M., 1988 | MR | MR | Zbl