Mots-clés : Lorentz force
@article{TMF_2009_160_2_a1,
author = {N. N. Bogolyubov (Jr.) and A. K. Prikarpatskii and U. Taneri},
title = {The~vacuum structure, special relativity theory, and~quantum mechanics: {A~return} to the~field theory approach without geometry},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {249--269},
year = {2009},
volume = {160},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_2_a1/}
}
TY - JOUR AU - N. N. Bogolyubov (Jr.) AU - A. K. Prikarpatskii AU - U. Taneri TI - The vacuum structure, special relativity theory, and quantum mechanics: A return to the field theory approach without geometry JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 249 EP - 269 VL - 160 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2009_160_2_a1/ LA - ru ID - TMF_2009_160_2_a1 ER -
%0 Journal Article %A N. N. Bogolyubov (Jr.) %A A. K. Prikarpatskii %A U. Taneri %T The vacuum structure, special relativity theory, and quantum mechanics: A return to the field theory approach without geometry %J Teoretičeskaâ i matematičeskaâ fizika %D 2009 %P 249-269 %V 160 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2009_160_2_a1/ %G ru %F TMF_2009_160_2_a1
N. N. Bogolyubov (Jr.); A. K. Prikarpatskii; U. Taneri. The vacuum structure, special relativity theory, and quantum mechanics: A return to the field theory approach without geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 2, pp. 249-269. http://geodesic.mathdoc.fr/item/TMF_2009_160_2_a1/
[1] R. P. Feynman et al., (Based on notes by F. B. Morinigo and W. G. Wagner, edited by B. Hatfield), Addison-Wesley, Reading, MA, 1995
[2] P. G. de Gennes, Superconductivity of Metals and Alloys, Benjamin, New York, 1966 | Zbl
[3] J. Carstoiu, C. R. Acad. Sci. Paris, 268 (1969), 201–204
[4] M. A. Markov, “Printsip Makha i fizicheskii vakuum v obschei teorii otnositelnosti”, Problemy teoreticheskoi fiziki, Sbornik, posvyasch. 60-letiyu N. N. Bogolyubova, ed. D. I. Blokhintsev, Nauka, M., 1969, 26–27 | MR | Zbl
[5] E. F. Taylor, J. A. Wheeler, Spacetime Physics, Freeman, New York, 1992 | MR
[6] B. M. Barbashov, D. Blaschke, G. V. Efimov et al., Selected Problems of Modern Physics, Proc. of the XII-th Internat. Conf., Sect. 1, Dubna, 2003
[7] A. K. Prykarpatsky, N. N. Bogolubov Jr., The field structure of vacuum, Maxwell equations and relativity theory aspects. Part 1, arXiv: 0807.3691
[8] R. Feinman, R. Leiton, M. Sends, Feinmanovskie lektsii po fizike. T. 6. Elektrodinamika, Mir, M., 1977 | MR | MR | Zbl
[9] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | MR | Zbl
[10] Dzh. D. Berken, S. D. Drell, Relyativistskaya kvantovaya teoriya. T. II. Relyativistskie kvantovye polya, Nauka, M., 1978 | MR | MR | Zbl
[11] A. I. Akhiezer, V. B. Berestetskii, Kvantovaya elektrodinamika, Nauka, M., 1981 | MR | MR | Zbl
[12] J. Schwinger, Quantum Electrodynamics, Dover, New York, 1958 | MR | Zbl
[13] I. Bialynicki-Birula, Phys. Rev., 155:5 (1967), 1414–1414 ; 166:5 (1968), 1505–1506 | DOI | MR | DOI
[14] A. Zommerfeld, Mekhanika, RKhD, Izhevsk, 2001 | Zbl
[15] L. Brillyuen, Novyi vzglyad na teoriyu otnositelnosti, Mir, M., 1972
[16] L. D. Faddeev, UFN, 136:3 (1982), 435–457 | DOI | MR | Zbl
[17] O. N. Repchenko, Polevaya fizika ili kak ustroen Mir?, Galeriya, M., 2005
[18] C. H. Brans, R. H. Dicke, Phys. Rev., 124:3 (1961), 925–935 | DOI | MR | Zbl
[19] A. A. Logunov, Lektsii po teorii otnositelnosti i gravitatsii, Nauka, M., 1987 | MR | MR | Zbl
[20] V. A. Fok, Teoriya prostranstva, vremeni i tyagoteniya, Nauka, M., 1961 | MR | Zbl
[21] V. Pauli, Teoriya otnositelnosti, Nauka, M., 1983 | MR | Zbl
[22] R. Weinstock, Amer. J. Phys., 33:8 (1965), 640–645 | DOI | Zbl
[23] A. R. Lee, T. M. Kalotas, Amer. J. Phys., 43:5 (1975), 434–437 | DOI
[24] J. M. Lévy-Leblond, Amer. J. Phys., 44:3 (1976), 271–277 | DOI
[25] N. D. Mermin, Amer. J. Phys., 52:2 (1984), 119–124 | DOI | MR
[26] A. Sen, Amer. J. Phys., 62:2 (1994), 157–162 | DOI | MR
[27] P. W. Bridgman, Reflections of a Physicist, Philosophical Library, New York, 1950 | Zbl
[28] A. Chorin, J. Marsden, A Mathematical Introduction to Fluid Mechanics, Texts Appl. Math., 4, Springer, New York, 1993 | DOI | MR | Zbl
[29] A. K. Prykarpatsky, N. N. Bogolubov (Jr.), J. Golenia, U. Taneri, Internat. J. Theoret. Phys., 47:11 (2008), 2882–2897 ; publications.ictp.it | DOI | MR | Zbl
[30] P. A. M. Dirak, Printsipy kvantovoi mekhaniki, Fizmatgiz, M., 1960 | MR | MR | Zbl
[31] V. A. Fock, Z. Phys., 75:9–10 (1932), 622–647 | DOI | Zbl
[32] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1965 | MR | Zbl
[33] A. K. Prykarpatsky, U. Taneri, N. N. Bogolubov Jr., Quantum Field Theory with Application to Quantum Nonlinear Optics, World Scientific, Singapore, 2002 | MR | Zbl
[34] A. Z. Petrov, Dokl. AN USSR, 190 (1970), 305
[35] Dzh. K. Maksvell, Traktat ob elektrichestve i magnetizme, T. 1, 2, Nauka, M., 1989 | MR | Zbl
[36] O. Heaviside, Electromagnetic Theory, V. I, The Electrician Printing, London, 1894 | Zbl
[37] L. Brillouin, R. Lucas, J. Phys. Radium, 27 (1966), 229–232 | DOI
[38] R. Burghardt, Acta Phys. Austr., 32 (1970), 272–281
[39] G. t'Hooft, Introduction to General Relativity, Rinton Press, Princeton, NJ, 2001 ; www.phys.uu.nl/~thooft/lectures/ genrel.pdf | MR | Zbl
[40] D. N. Mermin, It's About Time: Understanding Einstein's Relativity, Princeton Univ. Press, Princeton, NJ, 2005 | MR | Zbl
[41] B. M. Barbashov, V. V. Nesterenko, Model relyativistskoi struny v fizike adronov, Energoatomizdat, M., 1987 | MR | Zbl
[42] H. Collins, Gravity's Shadow: The Search for Gravitational Waves, University of Chicago Press, Chicago, 2004
[43] T. Damour, “General relativity and experiment”, XIth International Congress on Mathematical Physics, ed. D. Iagolnitzes, International Press, Cambridge, MA, 1995, 37–46 | MR | Zbl
[44] B. Green, The Elegant Universe. Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, Norton, New York, 1999 | MR | Zbl