Equations of the Camassa–Holm Hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 93-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The squared eigenfunctions of the spectral problem associated with the Camassa–Holm (CH) equation represent a complete basis of functions, which helps to describe the inverse scattering transform for the CH hierarchy as a generalized Fourier transform (GFT). All the fundamental properties of the CH equation, such as the integrals of motion, the description of the equations of the whole hierarchy, and their Hamiltonian structures, can be naturally expressed using the completeness relation and the recursion operator, whose eigenfunctions are the squared solutions. Using the GFT, we explicitly describe some members of the CH hierarchy, including integrable deformations for the CH equation. We also show that solutions of some $(1+2)$-dimensional members of the CH hierarchy can be constructed using results for the inverse scattering transform for the CH equation. We give an example of the peakon solution of one such equation.
Keywords: inverse scattering, peakon, integrable system
Mots-clés : soliton, Lax pair.
@article{TMF_2009_160_1_a8,
     author = {R. I. Ivanov},
     title = {Equations of {the~Camassa{\textendash}Holm} {Hierarchy}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {93--101},
     year = {2009},
     volume = {160},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a8/}
}
TY  - JOUR
AU  - R. I. Ivanov
TI  - Equations of the Camassa–Holm Hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 93
EP  - 101
VL  - 160
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a8/
LA  - ru
ID  - TMF_2009_160_1_a8
ER  - 
%0 Journal Article
%A R. I. Ivanov
%T Equations of the Camassa–Holm Hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 93-101
%V 160
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a8/
%G ru
%F TMF_2009_160_1_a8
R. I. Ivanov. Equations of the Camassa–Holm Hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 93-101. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a8/

[1] R. Camassa, D. Holm, Phys. Rev. Lett., 71:11 (1993), 1661–1664 | DOI | MR | Zbl

[2] H.-H. Dai, Acta Mech., 127:1–4 (1998), 193–207 | DOI | MR | Zbl

[3] A. Constantin, W. A. Strauss, Phys. Lett. A, 270:3–4 (2000), 140–148 | DOI | MR | Zbl

[4] A. Constantin, J. Escher, Acta Math., 181:2 (1998), 229–243 | DOI | MR | Zbl

[5] R. S. Johnson, J. Fluid Mech., 455 (2002), 63–82 | DOI | MR | Zbl

[6] R. S. Johnson, Fluid Dynam. Res., 33:1–2 (2003), 97–111 | DOI | MR | Zbl

[7] H. R. Dullin, G. A. Gottwald, D. D. Holm, Fluid Dynam. Res., 33:1–2 (2003), 73–95 | DOI | MR | Zbl

[8] H. R. Dullin, G. A. Gottwald, D. D. Holm, Phys. D, 190:1 (2004), 1–14 | DOI | MR | Zbl

[9] R. I. Ivanov, Philos. Trans. R. Soc. Lond. Ser. A, 365:1858 (2007), 2267–2280 ; arXiv: 0707.1839 | DOI | MR | Zbl

[10] A. Constantin, D. Lannes, Arch. Ration. Mech. Anal., 192:1 (2009), 165–186 ; arXiv: 0709.0905 | DOI | MR

[11] D. Ionescu-Kruse, Discrete Contin. Dyn. Syst., 19:3 (2007), 531–543 | DOI | MR | Zbl

[12] A. Constantin, W. A. Strauss, Comm. Pure Appl. Math., 53:5 (2000), 603–610 | 3.0.CO;2-L class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[13] A. Constantin, W. Strauss, J. Nonlinear Sci., 12:4 (2002), 415–422 | DOI | MR | Zbl

[14] A. Constantin, H. P. McKean, Comm. Pure Appl. Math., 52:8 (1999), 949–982 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[15] D. Henry, J. Nonlinear Math. Phys., 12:3 (2005), 342–347 | DOI | MR | Zbl

[16] R. Ivanov, J. Nonlinear Math. Phys., 12:4 (2005), 462–468 ; arXiv: nlin.SI/0606046 | DOI | MR | Zbl

[17] Z. Liu, Z. Ouyang, Phys. Lett. A, 366:4–5 (2007), 377–381 | DOI | MR | Zbl

[18] O. G. Mustafa, Comm. Math. Phys., 265:1 (2006), 189–200 | DOI | MR | Zbl

[19] O. G. Mustafa, Discrete Contin. Dyn. Syst., 19:3 (2007), 575–594 | DOI | MR | Zbl

[20] M. Stanislavova, A. Stefanov, Discrete Contin. Dyn. Syst., 18:1 (2007), 159–186 ; arXiv: math.DS/0612321 | DOI | MR | Zbl

[21] R. Camassa, A. Zenchuk, Phys. Lett. A, 281:1 (2001), 26–33 | DOI | MR | Zbl

[22] R. Beals, D. Sattinger, J. Szmigielski, Adv. Math., 140:2 (1998), 190–206 | DOI | MR | Zbl

[23] R. Beals, D. Sattinger, J. Szmigielski, Inverse Problems, 15:1 (1999), L1–L4 | DOI | MR | Zbl

[24] G. Misiołek, J. Geom. Phys., 24:3 (1998), 203–208 | DOI | MR | Zbl

[25] A. Constantin, B. Kolev, Comment. Math. Helv., 78:4 (2003), 787–804 | DOI | MR | Zbl

[26] A. Constantin, B. Kolev, J. Nonlinear Sci., 16:2 (2006), 109–122 | DOI | MR | Zbl

[27] B. Kolev, J. Nonlinear Math. Phys., 11:4 (2004), 480–498 | DOI | MR | Zbl

[28] A. Constantin, R. Ivanov, “The Camassa–Holm equation as a geodesic flow for the $H^1$ right-invariant metric”, Topics in Contemporary Differential Geometry, Complex Analysis and Mathematical Physics, eds. S. Dimiev, K. Sekigawa, World Sci., New York, 2007, 33–41 ; arXiv: 0706.3810 | DOI | MR | Zbl

[29] A. Constantin, T. Kappeler, B. Kolev, P. Topalov, Ann. Global Anal. Geom., 31:2 (2007), 155–180 | DOI | MR | Zbl

[30] A. Fokas, B. Fuchssteiner, Lett. Nuovo Cimento, 28:8 (1980), 299–303 | DOI | MR

[31] M. Fisher, J. Schiff, Phys. Lett. A, 259:5 (1999), 371–376 | DOI | MR | Zbl

[32] A. Constantin, R. I. Ivanov, Lett. Math. Phys., 76:1 (2006), 93–108 ; arXiv: nlin.SI/0602049 | DOI | MR | Zbl

[33] R. I. Ivanov, Z. Naturforsch., 61a (2006), 133–138 ; arXiv: nlin.SI/0601066 | Zbl

[34] A. Constantin, V. S. Gerdjikov, R. I. Ivanov, Inverse Problems, 23:4 (2007), 1565–1597 ; arXiv: 0707.2048 | DOI | MR | Zbl

[35] A. Constantin, Proc. R. Soc. Lond. Ser. A, 457:2008 (2001), 953–970 | DOI | MR | Zbl

[36] A. Constantin, V. S. Gerdjikov, R. I. Ivanov, Inverse Problems, 22:6 (2006), 2197–2207 ; arXiv: nlin.SI/0603019 | DOI | MR | Zbl

[37] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl

[38] D. J. Kaup, J. Math. Anal. Appl., 54:3 (1976), 849–864 | DOI | MR | Zbl

[39] V. S. Gerdjikov, E. H. Hristov, Bulgar J. Phys., 7:1 (1980), 28–41 | MR

[40] V. S. Gerdjikov, Inverse Problems, 2:1 (1986), 51–74 | DOI | MR | Zbl

[41] V. S. Gerdjikov, M. I. Ivanov, Inverse Problems, 8:6 (1992), 831–847 | DOI | MR | Zbl

[42] V. S. Gerdjikov, A. B. Yanovski, J. Math. Phys., 35:7 (1994), 3687–3725 | DOI | MR | Zbl

[43] I. D. Iliev, E. Kh. Khristov, K. P. Kirchev, Spectral Methods in Soliton Equations, Pitman Monogr. Surv. Pure Appl. Math., 73, Pitman, New York, 1994 | MR | Zbl

[44] A. S. Fokas, P. J. Olver, P. Rosenau, “A plethora of integrable bi-Hamiltonian equations”, Algebraic Aspects of Integrable Systems, Progr. Nonlinear Differential Equations Appl., 26, eds. A. S. Fokas, I. M. Gelfand, Birkhäuser, Boston, 1997, 93–101 | MR | Zbl

[45] P. Clarkson, P. Gordoa, A. Pickering, Inverse Problems, 13:6 (1997), 1463–1476 | DOI | MR | Zbl

[46] A. Boutet de Monvel, D. Shepelsky, C. R. Math. Acad. Sci. Paris, 343:10 (2006), 627–632 | DOI | MR | Zbl

[47] D. J. Kaup, Stud. Appl. Math., 117:2 (2006), 149–164 | DOI | MR | Zbl