Mots-clés : soliton, Lax pair.
@article{TMF_2009_160_1_a8,
author = {R. I. Ivanov},
title = {Equations of {the~Camassa{\textendash}Holm} {Hierarchy}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {93--101},
year = {2009},
volume = {160},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a8/}
}
R. I. Ivanov. Equations of the Camassa–Holm Hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 93-101. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a8/
[1] R. Camassa, D. Holm, Phys. Rev. Lett., 71:11 (1993), 1661–1664 | DOI | MR | Zbl
[2] H.-H. Dai, Acta Mech., 127:1–4 (1998), 193–207 | DOI | MR | Zbl
[3] A. Constantin, W. A. Strauss, Phys. Lett. A, 270:3–4 (2000), 140–148 | DOI | MR | Zbl
[4] A. Constantin, J. Escher, Acta Math., 181:2 (1998), 229–243 | DOI | MR | Zbl
[5] R. S. Johnson, J. Fluid Mech., 455 (2002), 63–82 | DOI | MR | Zbl
[6] R. S. Johnson, Fluid Dynam. Res., 33:1–2 (2003), 97–111 | DOI | MR | Zbl
[7] H. R. Dullin, G. A. Gottwald, D. D. Holm, Fluid Dynam. Res., 33:1–2 (2003), 73–95 | DOI | MR | Zbl
[8] H. R. Dullin, G. A. Gottwald, D. D. Holm, Phys. D, 190:1 (2004), 1–14 | DOI | MR | Zbl
[9] R. I. Ivanov, Philos. Trans. R. Soc. Lond. Ser. A, 365:1858 (2007), 2267–2280 ; arXiv: 0707.1839 | DOI | MR | Zbl
[10] A. Constantin, D. Lannes, Arch. Ration. Mech. Anal., 192:1 (2009), 165–186 ; arXiv: 0709.0905 | DOI | MR
[11] D. Ionescu-Kruse, Discrete Contin. Dyn. Syst., 19:3 (2007), 531–543 | DOI | MR | Zbl
[12] A. Constantin, W. A. Strauss, Comm. Pure Appl. Math., 53:5 (2000), 603–610 | 3.0.CO;2-L class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[13] A. Constantin, W. Strauss, J. Nonlinear Sci., 12:4 (2002), 415–422 | DOI | MR | Zbl
[14] A. Constantin, H. P. McKean, Comm. Pure Appl. Math., 52:8 (1999), 949–982 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[15] D. Henry, J. Nonlinear Math. Phys., 12:3 (2005), 342–347 | DOI | MR | Zbl
[16] R. Ivanov, J. Nonlinear Math. Phys., 12:4 (2005), 462–468 ; arXiv: nlin.SI/0606046 | DOI | MR | Zbl
[17] Z. Liu, Z. Ouyang, Phys. Lett. A, 366:4–5 (2007), 377–381 | DOI | MR | Zbl
[18] O. G. Mustafa, Comm. Math. Phys., 265:1 (2006), 189–200 | DOI | MR | Zbl
[19] O. G. Mustafa, Discrete Contin. Dyn. Syst., 19:3 (2007), 575–594 | DOI | MR | Zbl
[20] M. Stanislavova, A. Stefanov, Discrete Contin. Dyn. Syst., 18:1 (2007), 159–186 ; arXiv: math.DS/0612321 | DOI | MR | Zbl
[21] R. Camassa, A. Zenchuk, Phys. Lett. A, 281:1 (2001), 26–33 | DOI | MR | Zbl
[22] R. Beals, D. Sattinger, J. Szmigielski, Adv. Math., 140:2 (1998), 190–206 | DOI | MR | Zbl
[23] R. Beals, D. Sattinger, J. Szmigielski, Inverse Problems, 15:1 (1999), L1–L4 | DOI | MR | Zbl
[24] G. Misiołek, J. Geom. Phys., 24:3 (1998), 203–208 | DOI | MR | Zbl
[25] A. Constantin, B. Kolev, Comment. Math. Helv., 78:4 (2003), 787–804 | DOI | MR | Zbl
[26] A. Constantin, B. Kolev, J. Nonlinear Sci., 16:2 (2006), 109–122 | DOI | MR | Zbl
[27] B. Kolev, J. Nonlinear Math. Phys., 11:4 (2004), 480–498 | DOI | MR | Zbl
[28] A. Constantin, R. Ivanov, “The Camassa–Holm equation as a geodesic flow for the $H^1$ right-invariant metric”, Topics in Contemporary Differential Geometry, Complex Analysis and Mathematical Physics, eds. S. Dimiev, K. Sekigawa, World Sci., New York, 2007, 33–41 ; arXiv: 0706.3810 | DOI | MR | Zbl
[29] A. Constantin, T. Kappeler, B. Kolev, P. Topalov, Ann. Global Anal. Geom., 31:2 (2007), 155–180 | DOI | MR | Zbl
[30] A. Fokas, B. Fuchssteiner, Lett. Nuovo Cimento, 28:8 (1980), 299–303 | DOI | MR
[31] M. Fisher, J. Schiff, Phys. Lett. A, 259:5 (1999), 371–376 | DOI | MR | Zbl
[32] A. Constantin, R. I. Ivanov, Lett. Math. Phys., 76:1 (2006), 93–108 ; arXiv: nlin.SI/0602049 | DOI | MR | Zbl
[33] R. I. Ivanov, Z. Naturforsch., 61a (2006), 133–138 ; arXiv: nlin.SI/0601066 | Zbl
[34] A. Constantin, V. S. Gerdjikov, R. I. Ivanov, Inverse Problems, 23:4 (2007), 1565–1597 ; arXiv: 0707.2048 | DOI | MR | Zbl
[35] A. Constantin, Proc. R. Soc. Lond. Ser. A, 457:2008 (2001), 953–970 | DOI | MR | Zbl
[36] A. Constantin, V. S. Gerdjikov, R. I. Ivanov, Inverse Problems, 22:6 (2006), 2197–2207 ; arXiv: nlin.SI/0603019 | DOI | MR | Zbl
[37] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl
[38] D. J. Kaup, J. Math. Anal. Appl., 54:3 (1976), 849–864 | DOI | MR | Zbl
[39] V. S. Gerdjikov, E. H. Hristov, Bulgar J. Phys., 7:1 (1980), 28–41 | MR
[40] V. S. Gerdjikov, Inverse Problems, 2:1 (1986), 51–74 | DOI | MR | Zbl
[41] V. S. Gerdjikov, M. I. Ivanov, Inverse Problems, 8:6 (1992), 831–847 | DOI | MR | Zbl
[42] V. S. Gerdjikov, A. B. Yanovski, J. Math. Phys., 35:7 (1994), 3687–3725 | DOI | MR | Zbl
[43] I. D. Iliev, E. Kh. Khristov, K. P. Kirchev, Spectral Methods in Soliton Equations, Pitman Monogr. Surv. Pure Appl. Math., 73, Pitman, New York, 1994 | MR | Zbl
[44] A. S. Fokas, P. J. Olver, P. Rosenau, “A plethora of integrable bi-Hamiltonian equations”, Algebraic Aspects of Integrable Systems, Progr. Nonlinear Differential Equations Appl., 26, eds. A. S. Fokas, I. M. Gelfand, Birkhäuser, Boston, 1997, 93–101 | MR | Zbl
[45] P. Clarkson, P. Gordoa, A. Pickering, Inverse Problems, 13:6 (1997), 1463–1476 | DOI | MR | Zbl
[46] A. Boutet de Monvel, D. Shepelsky, C. R. Math. Acad. Sci. Paris, 343:10 (2006), 627–632 | DOI | MR | Zbl
[47] D. J. Kaup, Stud. Appl. Math., 117:2 (2006), 149–164 | DOI | MR | Zbl