Quantum phase problem for harmonic and time-dependent oscillator systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 59-68

Voir la notice de l'article provenant de la source Math-Net.Ru

We address generalized measurements of linear multimode operators and discuss some aspects relevant to constructing angle operators for arbitrary quadratic Hamiltonian systems via Weyl-ordered expansions in terms of position and momentum operators.
Keywords: quantum angle operator, generalized measurement, harmonic oscillator system, linear multimode operator, heterodyne detection.
@article{TMF_2009_160_1_a5,
     author = {M. Gianfreda and G. Landolfi and M. G. A. Paris},
     title = {Quantum phase problem for harmonic and time-dependent oscillator systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {59--68},
     publisher = {mathdoc},
     volume = {160},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a5/}
}
TY  - JOUR
AU  - M. Gianfreda
AU  - G. Landolfi
AU  - M. G. A. Paris
TI  - Quantum phase problem for harmonic and time-dependent oscillator systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 59
EP  - 68
VL  - 160
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a5/
LA  - ru
ID  - TMF_2009_160_1_a5
ER  - 
%0 Journal Article
%A M. Gianfreda
%A G. Landolfi
%A M. G. A. Paris
%T Quantum phase problem for harmonic and time-dependent oscillator systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 59-68
%V 160
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a5/
%G ru
%F TMF_2009_160_1_a5
M. Gianfreda; G. Landolfi; M. G. A. Paris. Quantum phase problem for harmonic and time-dependent oscillator systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 59-68. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a5/