Quantum phase problem for harmonic and time-dependent oscillator systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 59-68
Voir la notice de l'article provenant de la source Math-Net.Ru
We address generalized measurements of linear multimode operators and discuss some aspects relevant to constructing angle operators for arbitrary quadratic Hamiltonian systems via Weyl-ordered expansions in terms of position and momentum operators.
Keywords:
quantum angle operator, generalized measurement, harmonic oscillator system, linear multimode operator, heterodyne detection.
@article{TMF_2009_160_1_a5,
author = {M. Gianfreda and G. Landolfi and M. G. A. Paris},
title = {Quantum phase problem for harmonic and time-dependent oscillator systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {59--68},
publisher = {mathdoc},
volume = {160},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a5/}
}
TY - JOUR AU - M. Gianfreda AU - G. Landolfi AU - M. G. A. Paris TI - Quantum phase problem for harmonic and time-dependent oscillator systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 59 EP - 68 VL - 160 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a5/ LA - ru ID - TMF_2009_160_1_a5 ER -
%0 Journal Article %A M. Gianfreda %A G. Landolfi %A M. G. A. Paris %T Quantum phase problem for harmonic and time-dependent oscillator systems %J Teoretičeskaâ i matematičeskaâ fizika %D 2009 %P 59-68 %V 160 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a5/ %G ru %F TMF_2009_160_1_a5
M. Gianfreda; G. Landolfi; M. G. A. Paris. Quantum phase problem for harmonic and time-dependent oscillator systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 59-68. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a5/