Gauge-invariant description of several $(2+1)$-dimensional integrable nonlinear evolution equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 35-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain new gauge-invariant forms of two-dimensional integrable systems of nonlinear equations: the Sawada–Kotera and Kaup–Kuperschmidt system, the generalized system of dispersive long waves, and the Nizhnik–Veselov–Novikov system. We show how these forms imply both new and well-known two-dimensional integrable nonlinear equations: the Sawada–Kotera equation, Kaup–Kuperschmidt equation, dispersive long-wave system, Nizhnik–Veselov–Novikov equation, and modified Nizhnik–Veselov–Novikov equation. We consider Miura-type transformations between nonlinear equations in different gauges.
Mots-clés : Sawada–Kotera equation
Keywords: Kaup–Kuperschmidt equation, generalized dispersive long-wave equation, Davey–Stewartson equation, Nizhnik–Veselov–Novikov equation.
@article{TMF_2009_160_1_a3,
     author = {V. G. Dubrovskii and A. V. Gramolin},
     title = {Gauge-invariant description of several $(2+1)$-dimensional integrable nonlinear evolution equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {35--48},
     year = {2009},
     volume = {160},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a3/}
}
TY  - JOUR
AU  - V. G. Dubrovskii
AU  - A. V. Gramolin
TI  - Gauge-invariant description of several $(2+1)$-dimensional integrable nonlinear evolution equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 35
EP  - 48
VL  - 160
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a3/
LA  - ru
ID  - TMF_2009_160_1_a3
ER  - 
%0 Journal Article
%A V. G. Dubrovskii
%A A. V. Gramolin
%T Gauge-invariant description of several $(2+1)$-dimensional integrable nonlinear evolution equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 35-48
%V 160
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a3/
%G ru
%F TMF_2009_160_1_a3
V. G. Dubrovskii; A. V. Gramolin. Gauge-invariant description of several $(2+1)$-dimensional integrable nonlinear evolution equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 35-48. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a3/

[1] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego prilozh., 8:3 (1974), 43–53 | DOI | MR | Zbl

[2] E. A. Kuznetsov, A. V. Mikhailov, TMF, 30:3 (1977), 303–314 | DOI | MR

[3] V. E. Zakharov, A. V. Mikhailov, ZhETF, 74:6 (1978), 1953–1973 | MR

[4] V. E. Zakharov, L. A. Takhtadzhyan, TMF, 38:1 (1979), 26–35 | DOI | MR

[5] B. G. Konopelchenko, Phys. Lett. A, 92:7 (1982), 323–327 | DOI | MR

[6] B. G. Konopelchenko, V. G. Dubrovsky, Phys. Lett. A, 95:9 (1983), 457–462 | DOI | MR

[7] B. G. Konopelchenko, V. G. Dubrovsky, Ann. Phys., 156:2 (1984), 265–302 | DOI | MR | Zbl

[8] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl

[9] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | MR | Zbl

[10] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lecture Note Ser., 149, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[11] B. G. Konopelchenko, Nonlinear Integrable Equations: Recursion Operators, Group-Theoretical and Hamiltonian Structures of Soliton Equations, Lecture Notes in Phys., 270, Springer, Berlin, 1987 | DOI | MR | Zbl

[12] B. G. Konopelchenko, Introduction to Multidimensional Integrable Equations: The Inverse Spectral Transform in $2+1$ Dimensions, Plenum Press, New York, 1992 | MR | Zbl

[13] B. G. Konopelchenko, Solitons in Multidimensions: Inverse Spectral Transform Method, World Sci., Singapore, 1993 | MR | Zbl

[14] B. G. Konopelchenko, C. Rogers, “Bäcklund and reciprocal transformations: gauge connections”, Nonlinear Equations in the Applied Sciences, Math. Sci. Engrg., 185, eds. W. F. Ames, C. Rogers, Academic Press, New York, 1992, 317–362 | DOI | MR | Zbl

[15] V. S. Dryuma, Pisma v ZhETF, 19:12 (1974), 753–755

[16] B. G. Konopelchenko, V. G. Dubrovsky, Phys. Lett. A, 102:1–2 (1984), 15–17 | DOI | MR

[17] V. G. Dubrovsky, A. V. Gramolin, J. Phys. A, 41:27 (2008), 275208 | DOI | MR | Zbl

[18] M. Boiti, J. J. P. Leon, F. Pempinelli, Inverse Problems, 3:3 (1987), 371–387 | DOI | MR | Zbl

[19] A. Davey, K. Stewartson, Proc. R. Soc. Lond. Ser. A, 338:1613 (1974), 101–110 | DOI | MR | Zbl

[20] S. V. Manakov, UMN, 31:5(191) (1976), 245–246 | MR | Zbl

[21] A. R. Forsyth, Theory of Differential Equations, vol. VI, Cambridge Univ. Press, Cambridge, 1906 | MR | Zbl

[22] L. J. F. Broer, Appl. Sci. Res., 31:5 (1975), 377–395 | DOI | MR | Zbl

[23] B. G. Konopelchenko, Inverse Problems, 4:1 (1988), 151–163 | DOI | MR | Zbl

[24] L. P. Nizhnik, DAN SSSR, 254:2 (1980), 332–335 | MR | Zbl

[25] A. P. Veselov, S. P. Novikov, DAN SSSR, 279:1 (1984), 20–24 | MR | Zbl

[26] B. G. Konopelchenko, Rev. Math. Phys., 2:4 (1990), 399–440 | DOI | MR | Zbl

[27] L. V. Bogdanov, TMF, 70:2 (1987), 309–314 | DOI | MR | Zbl