Madelung fluid description of the generalized derivative nonlinear Schrödinger equation: Special solutions and their stability
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 229-239 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A correspondence between the families of generalized nonlinear Schrödinger (NLS) equations and generalized KdV equations was recently found using a Madelung fluid description. We similarly consider a special derivative NLS equation. We find a number of solitary waves and periodic solutions (expressed in terms of elliptic Jacobi functions) for a motion with a stationary profile current velocity. We study the stability of a bright solitary wave (ground state) by conjecturing that the Vakhitov–Kolokolov criterion is applicable.
Keywords: nonlinear partial differential equation, generalized nonlinear Schrödinger equation, generalized Korteweg–de Vries equation, Madelung fluid description.
@article{TMF_2009_160_1_a21,
     author = {A. Visinescu and D. Grecu and R. Fedele and S. De Nicola},
     title = {Madelung fluid description of the~generalized derivative nonlinear {Schr\"odinger} equation: {Special} solutions and their stability},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {229--239},
     year = {2009},
     volume = {160},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a21/}
}
TY  - JOUR
AU  - A. Visinescu
AU  - D. Grecu
AU  - R. Fedele
AU  - S. De Nicola
TI  - Madelung fluid description of the generalized derivative nonlinear Schrödinger equation: Special solutions and their stability
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 229
EP  - 239
VL  - 160
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a21/
LA  - ru
ID  - TMF_2009_160_1_a21
ER  - 
%0 Journal Article
%A A. Visinescu
%A D. Grecu
%A R. Fedele
%A S. De Nicola
%T Madelung fluid description of the generalized derivative nonlinear Schrödinger equation: Special solutions and their stability
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 229-239
%V 160
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a21/
%G ru
%F TMF_2009_160_1_a21
A. Visinescu; D. Grecu; R. Fedele; S. De Nicola. Madelung fluid description of the generalized derivative nonlinear Schrödinger equation: Special solutions and their stability. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 229-239. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a21/

[1] E. Madelung, Z. Phys., 40 (1926), 332–326 | Zbl

[2] D. Bohm, Phys. Rev., 85:2 (1952), 166–179 | DOI | MR | Zbl

[3] D. Bohm, B. J. Hiley, P. N. Kaloyerou, Phys. Rep., 144:6 (1987), 321–375 | DOI | MR

[4] G. Auletta, Foundation and Interpretation of Quantum Mechanics, World Sci., Singapore, 2000 | MR | Zbl

[5] J. C. Vink, Nucl. Phys. B, 369:3 (1992), 707–728 ; N. Pinto-Neto, Found. Phys., 35:4 (2005), 577–603 | DOI | MR | DOI | MR | Zbl

[6] F. Haas, L. G. Garcia, J. Goedert, G. Manfredi, Phys. Plasmas, 10:10 (2003), 3858–3866 ; F. Haas, G. Manfredi, M. Feix, Phys. Rev. E, 62:2 (2000), 2763–2772 | DOI | DOI

[7] P. A. Markowich, C. A. Ringhofer, C. Schmeiser, Semiconductor Equations, Springer, Berlin, 1990 | MR | Zbl

[8] R. Fedele, D. Anderson, M. Lisak, Eur. Phys. J. B, 49:3 (2006), 275–281 | DOI

[9] R. Fedele, Phys. Scripta, 65:6 (2002), 502–508 ; R. Fedele, H. Schamel, Eur. Phys. J. B, 27:3 (2002), 313–320 ; R. Fedele, H. Schamel, P. K. Shukla, Phys. Scripta, T98:1 (2002), 18–23 ; R. Fedele, H. Schamel, V. I. Karpman, P. K. Shukla, J. Phys. A, 36:4 (2003), 1169–1173 | DOI | Zbl | DOI | DOI | DOI | MR | Zbl

[10] D. Grecu, A. T. Grecu, A. Visinescu, R. Fedele, S. De Nicola, J. Nonlinear Math. Phys., 15, Suppl. 3 (2008), 209–219 | DOI | MR

[11] A. Visinescu, R. Fedele, D. Grecu, S. De Nicola, Talk of International Conference on Fundamental and Applied Research in Physics FARPhys 2007 (25–28 October, Iassy, Romania), 2007 | MR

[12] R. Fedele, S. De Nicola, D. Grecu, P. K. Shukla, A. Visinescu, “Cylindrical nonlinear Schrödinger equation versus cylindrical Korteweg–de Vries equation”, Frontiers in Modern Plasma Physics, AIP Conf. Proc., 1061, eds. P. K. Shukla, B. Eliasson, L. Stenflo, Melville, NY, 2008, 273–281 | DOI

[13] D. J. Kaup, A. C. Newell, J. Math. Phys., 19:4 (1978), 798–801 ; T. Kawata, H. Inoue, J. Phys. Soc. Japan, 44:6 (1978), 1968–1976 ; X.-J. Chen, J. Yang, W. K. Lam, J. Phys. A, 39:13 (2006), 3263–3274 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[14] A. Nakamura, H. H. Chen, J. Phys. Soc. Japan, 49:2 (1980), 813–816 | DOI | MR | Zbl

[15] M. J. Ablowitz, A. Ramani, H. Segur, J. Math. Phys., 21:5 (1980), 1006–1015 ; V. S. Gerdjikov, M. I. Ivanov, Bulgar. J. Phys., 10:2 (1983), 130–143 ; T. Tsuchida, J. Phys. A, 35:36 (2002), 7827–7847 | DOI | MR | Zbl | MR | DOI | MR | Zbl

[16] N. G. Vakhitov, A. A. Kolokolov, Izv. vuzov. Ser. radiofizika, 16:7 (1973), 1020–1028 | DOI

[17] E. A. Kuznetsov, ZhETF, 116:1 (1999), 299–317 | DOI

[18] P. F. Byrd, M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Grundlehren Math. Wiss., 67, Springer, Berlin, 1971 | MR | Zbl

[19] E. A. Kuznetzov, A. M. Rubenchik, V. E. Zakharov, Phys. Rep., 142:3 (1986), 103–165 | DOI | MR

[20] M. I. Weinstein, Comm. Pure Appl. Math., 39:1 (1986), 51–67 | DOI | MR | Zbl

[21] S. Cuccagna, “A survey on asymptotic stability of ground states of nonlinear Schrödinger equations”, Dispersive Nonlinear Problems in Mathematical Physics, Quad. Mat., 15, ed. P. D'Ancona V. Georgev, Seconda Univ. Napoli, Caserta, 2004, 21–57 | MR | Zbl

[22] D. E. Pelinovsky, V. V. Afanasjev, Yu. S. Kivshar, Phys. Rev. E, 53:2 (1996), 1940–1953 | DOI