Madelung fluid description of the~generalized derivative nonlinear Schr\"odinger equation: Special solutions and their stability
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 229-239

Voir la notice de l'article provenant de la source Math-Net.Ru

A correspondence between the families of generalized nonlinear Schrödinger (NLS) equations and generalized KdV equations was recently found using a Madelung fluid description. We similarly consider a special derivative NLS equation. We find a number of solitary waves and periodic solutions (expressed in terms of elliptic Jacobi functions) for a motion with a stationary profile current velocity. We study the stability of a bright solitary wave (ground state) by conjecturing that the Vakhitov–Kolokolov criterion is applicable.
Keywords: nonlinear partial differential equation, generalized nonlinear Schrödinger equation, generalized Korteweg–de Vries equation, Madelung fluid description.
@article{TMF_2009_160_1_a21,
     author = {A. Visinescu and D. Grecu and R. Fedele and S. De Nicola},
     title = {Madelung fluid description of the~generalized derivative nonlinear {Schr\"odinger} equation: {Special} solutions and their stability},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {229--239},
     publisher = {mathdoc},
     volume = {160},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a21/}
}
TY  - JOUR
AU  - A. Visinescu
AU  - D. Grecu
AU  - R. Fedele
AU  - S. De Nicola
TI  - Madelung fluid description of the~generalized derivative nonlinear Schr\"odinger equation: Special solutions and their stability
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 229
EP  - 239
VL  - 160
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a21/
LA  - ru
ID  - TMF_2009_160_1_a21
ER  - 
%0 Journal Article
%A A. Visinescu
%A D. Grecu
%A R. Fedele
%A S. De Nicola
%T Madelung fluid description of the~generalized derivative nonlinear Schr\"odinger equation: Special solutions and their stability
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 229-239
%V 160
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a21/
%G ru
%F TMF_2009_160_1_a21
A. Visinescu; D. Grecu; R. Fedele; S. De Nicola. Madelung fluid description of the~generalized derivative nonlinear Schr\"odinger equation: Special solutions and their stability. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 229-239. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a21/