Madelung fluid description of the~generalized derivative nonlinear Schr\"odinger equation: Special solutions and their stability
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 229-239
Voir la notice de l'article provenant de la source Math-Net.Ru
A correspondence between the families of generalized nonlinear Schrödinger (NLS) equations and generalized KdV equations was recently found using a Madelung fluid description. We similarly consider
a special derivative NLS equation. We find a number of solitary waves and periodic solutions (expressed in terms of elliptic Jacobi functions) for a motion with a stationary profile current velocity. We study the stability of a bright solitary wave (ground state) by conjecturing that the Vakhitov–Kolokolov criterion is applicable.
Keywords:
nonlinear partial differential equation, generalized nonlinear Schrödinger equation, generalized Korteweg–de Vries equation, Madelung fluid description.
@article{TMF_2009_160_1_a21,
author = {A. Visinescu and D. Grecu and R. Fedele and S. De Nicola},
title = {Madelung fluid description of the~generalized derivative nonlinear {Schr\"odinger} equation: {Special} solutions and their stability},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {229--239},
publisher = {mathdoc},
volume = {160},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a21/}
}
TY - JOUR AU - A. Visinescu AU - D. Grecu AU - R. Fedele AU - S. De Nicola TI - Madelung fluid description of the~generalized derivative nonlinear Schr\"odinger equation: Special solutions and their stability JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 229 EP - 239 VL - 160 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a21/ LA - ru ID - TMF_2009_160_1_a21 ER -
%0 Journal Article %A A. Visinescu %A D. Grecu %A R. Fedele %A S. De Nicola %T Madelung fluid description of the~generalized derivative nonlinear Schr\"odinger equation: Special solutions and their stability %J Teoretičeskaâ i matematičeskaâ fizika %D 2009 %P 229-239 %V 160 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a21/ %G ru %F TMF_2009_160_1_a21
A. Visinescu; D. Grecu; R. Fedele; S. De Nicola. Madelung fluid description of the~generalized derivative nonlinear Schr\"odinger equation: Special solutions and their stability. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 229-239. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a21/