@article{TMF_2009_160_1_a21,
author = {A. Visinescu and D. Grecu and R. Fedele and S. De Nicola},
title = {Madelung fluid description of the~generalized derivative nonlinear {Schr\"odinger} equation: {Special} solutions and their stability},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {229--239},
year = {2009},
volume = {160},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a21/}
}
TY - JOUR AU - A. Visinescu AU - D. Grecu AU - R. Fedele AU - S. De Nicola TI - Madelung fluid description of the generalized derivative nonlinear Schrödinger equation: Special solutions and their stability JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 229 EP - 239 VL - 160 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a21/ LA - ru ID - TMF_2009_160_1_a21 ER -
%0 Journal Article %A A. Visinescu %A D. Grecu %A R. Fedele %A S. De Nicola %T Madelung fluid description of the generalized derivative nonlinear Schrödinger equation: Special solutions and their stability %J Teoretičeskaâ i matematičeskaâ fizika %D 2009 %P 229-239 %V 160 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a21/ %G ru %F TMF_2009_160_1_a21
A. Visinescu; D. Grecu; R. Fedele; S. De Nicola. Madelung fluid description of the generalized derivative nonlinear Schrödinger equation: Special solutions and their stability. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 229-239. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a21/
[1] E. Madelung, Z. Phys., 40 (1926), 332–326 | Zbl
[2] D. Bohm, Phys. Rev., 85:2 (1952), 166–179 | DOI | MR | Zbl
[3] D. Bohm, B. J. Hiley, P. N. Kaloyerou, Phys. Rep., 144:6 (1987), 321–375 | DOI | MR
[4] G. Auletta, Foundation and Interpretation of Quantum Mechanics, World Sci., Singapore, 2000 | MR | Zbl
[5] J. C. Vink, Nucl. Phys. B, 369:3 (1992), 707–728 ; N. Pinto-Neto, Found. Phys., 35:4 (2005), 577–603 | DOI | MR | DOI | MR | Zbl
[6] F. Haas, L. G. Garcia, J. Goedert, G. Manfredi, Phys. Plasmas, 10:10 (2003), 3858–3866 ; F. Haas, G. Manfredi, M. Feix, Phys. Rev. E, 62:2 (2000), 2763–2772 | DOI | DOI
[7] P. A. Markowich, C. A. Ringhofer, C. Schmeiser, Semiconductor Equations, Springer, Berlin, 1990 | MR | Zbl
[8] R. Fedele, D. Anderson, M. Lisak, Eur. Phys. J. B, 49:3 (2006), 275–281 | DOI
[9] R. Fedele, Phys. Scripta, 65:6 (2002), 502–508 ; R. Fedele, H. Schamel, Eur. Phys. J. B, 27:3 (2002), 313–320 ; R. Fedele, H. Schamel, P. K. Shukla, Phys. Scripta, T98:1 (2002), 18–23 ; R. Fedele, H. Schamel, V. I. Karpman, P. K. Shukla, J. Phys. A, 36:4 (2003), 1169–1173 | DOI | Zbl | DOI | DOI | DOI | MR | Zbl
[10] D. Grecu, A. T. Grecu, A. Visinescu, R. Fedele, S. De Nicola, J. Nonlinear Math. Phys., 15, Suppl. 3 (2008), 209–219 | DOI | MR
[11] A. Visinescu, R. Fedele, D. Grecu, S. De Nicola, Talk of International Conference on Fundamental and Applied Research in Physics FARPhys 2007 (25–28 October, Iassy, Romania), 2007 | MR
[12] R. Fedele, S. De Nicola, D. Grecu, P. K. Shukla, A. Visinescu, “Cylindrical nonlinear Schrödinger equation versus cylindrical Korteweg–de Vries equation”, Frontiers in Modern Plasma Physics, AIP Conf. Proc., 1061, eds. P. K. Shukla, B. Eliasson, L. Stenflo, Melville, NY, 2008, 273–281 | DOI
[13] D. J. Kaup, A. C. Newell, J. Math. Phys., 19:4 (1978), 798–801 ; T. Kawata, H. Inoue, J. Phys. Soc. Japan, 44:6 (1978), 1968–1976 ; X.-J. Chen, J. Yang, W. K. Lam, J. Phys. A, 39:13 (2006), 3263–3274 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[14] A. Nakamura, H. H. Chen, J. Phys. Soc. Japan, 49:2 (1980), 813–816 | DOI | MR | Zbl
[15] M. J. Ablowitz, A. Ramani, H. Segur, J. Math. Phys., 21:5 (1980), 1006–1015 ; V. S. Gerdjikov, M. I. Ivanov, Bulgar. J. Phys., 10:2 (1983), 130–143 ; T. Tsuchida, J. Phys. A, 35:36 (2002), 7827–7847 | DOI | MR | Zbl | MR | DOI | MR | Zbl
[16] N. G. Vakhitov, A. A. Kolokolov, Izv. vuzov. Ser. radiofizika, 16:7 (1973), 1020–1028 | DOI
[17] E. A. Kuznetsov, ZhETF, 116:1 (1999), 299–317 | DOI
[18] P. F. Byrd, M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Grundlehren Math. Wiss., 67, Springer, Berlin, 1971 | MR | Zbl
[19] E. A. Kuznetzov, A. M. Rubenchik, V. E. Zakharov, Phys. Rep., 142:3 (1986), 103–165 | DOI | MR
[20] M. I. Weinstein, Comm. Pure Appl. Math., 39:1 (1986), 51–67 | DOI | MR | Zbl
[21] S. Cuccagna, “A survey on asymptotic stability of ground states of nonlinear Schrödinger equations”, Dispersive Nonlinear Problems in Mathematical Physics, Quad. Mat., 15, ed. P. D'Ancona V. Georgev, Seconda Univ. Napoli, Caserta, 2004, 21–57 | MR | Zbl
[22] D. E. Pelinovsky, V. V. Afanasjev, Yu. S. Kivshar, Phys. Rev. E, 53:2 (1996), 1940–1953 | DOI