Exact solutions of a generalized Boussinesq equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 23-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze a generalized Boussinesq equation using the theory of symmetry reductions of partial differential equations. The Lie symmetry group analysis of this equation shows that the equation has only a two-parameter point symmetry group corresponding to traveling-wave solutions. To obtain exact solutions, we use two procedures: a direct method and the $G'/G$-expansion method. We express the traveling-wave solutions in terms of hyperbolic, trigonometric, and rational functions.
Keywords: partial differential equation, symmetry
Mots-clés : solution.
@article{TMF_2009_160_1_a2,
     author = {M. S. Bruz\'on},
     title = {Exact solutions of a~generalized {Boussinesq} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {23--34},
     year = {2009},
     volume = {160},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a2/}
}
TY  - JOUR
AU  - M. S. Bruzón
TI  - Exact solutions of a generalized Boussinesq equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 23
EP  - 34
VL  - 160
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a2/
LA  - ru
ID  - TMF_2009_160_1_a2
ER  - 
%0 Journal Article
%A M. S. Bruzón
%T Exact solutions of a generalized Boussinesq equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 23-34
%V 160
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a2/
%G ru
%F TMF_2009_160_1_a2
M. S. Bruzón. Exact solutions of a generalized Boussinesq equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a2/

[1] M. J. Boussinesq, C. R. Acad. Sci. Paris, 72 (1871), 755–759 | Zbl

[2] M. J. Boussinesq, J. Math. Pures Appl., 17 (1872), 55–109 | MR | Zbl

[3] A. M. Samsonov, E. V. Sokurinskaya, “Energy exchange between nonlinear waves in elastic waveguides and external media”, Nonlinear Waves in Active Media, Res. Rep. Phys., ed. J. Engelbrecht, Springer, Berlin, 1989, 99–104 | DOI | MR

[4] D. Zhengde, G. Boling, J. Partial Differential Equations, 12:4 (1999), 301–312 | MR | Zbl

[5] G. Chen, Y. Wang, S. Wang, J. Math. Appl., 299:2 (2004), 563–577 | DOI | MR | Zbl

[6] L. Yacheng, X. Runzhang, J. Math. Anal. Appl., 338:2 (2008), 1169–1187 | DOI | MR | Zbl

[7] D. Zhengde, G. Boling, Acta Math. Sci. B, 20:3 (2000), 322–334 | MR | Zbl

[8] S. Wang, G. Chen, Nonliniar Anal., 64:1 (2006), 159–173 | DOI | MR | Zbl

[9] P. A. Clarkson, T. J. Priestley, Symmetries of a Generalised Boussinesq equation, http://en.scientificcommons.org/234544

[10] P. A. Clarkson, J. Phys. A, 22:13 (1989), 2355–2367 | DOI | MR | Zbl

[11] P. A. Clarkson, M. D. Kruskal, J. Math. Phys., 30:10 (1989), 2201–2213 | DOI | MR | Zbl

[12] P. A. Clarkson, D. K. Ludlow, J. Math. Anal. Appl., 186:1 (1994), 132–155 | DOI | MR | Zbl

[13] P. A. Clarkson, Chaos Solitons Fractals, 5:12 (1995), 2261–2301 | DOI | MR | Zbl

[14] M. S. Bruzón, M. L. Gandarias, J. Ramírez, “Similarity reductions of an optical model”, Symmetry and Perturbation Theory, eds. G. Gaeta, B. Prinari, S. Rauch-Wojciechowski S. Terracini, World Sci., Singapore, 2005, 59–66 | DOI | MR | Zbl

[15] M. S. Bruzón, M. L. Gandarias, “Applying a new algorithm to derive nonclassical symmetries”, Nonlinear Science and Complexity, Proc. Conf. (Beijing, China, 7–12 August 2006), Trans. Nonlinear Sci. and Complexity, 1, eds. A. C. J. Luo, L. Dai, H. R. Hamidzadeh, World Sci., Hackensack, NJ, 2007, 7–12 | DOI | MR | Zbl

[16] M. S. Bruzón, M. L. Gandarias, Commun. Nonlinear Sci. Numer. Simul., 13:3 (2008), 517–523 | DOI | MR | Zbl

[17] M. S. Bruzón, M. L. Gandarias, Proc. Appl. Math. Mech., 8:1 (2009), 10587–10588 | DOI

[18] M. L. Gandarias, M. S. Bruzon, J. Nonlinear Math. Phys., 5:1 (1998), 8–12 | DOI | MR | Zbl

[19] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR | MR | Zbl

[20] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl

[21] M. Wang, X. Li, J. Zhang, Phys. Lett. A, 372:4 (2008), 417–423 | DOI | MR | Zbl

[22] M. Abramovits, I. Stegun (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[23] J. C. Camacho, M. S. Bruzón, J. Ramírez, M. L. Gandarias, “Local symmetries and exact solutions of a beam equation”, Chaos Solitons Fractals, to be published