@article{TMF_2009_160_1_a18,
author = {V. Rosenhaus},
title = {Infinite conservation laws for differential systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {202--210},
year = {2009},
volume = {160},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a18/}
}
V. Rosenhaus. Infinite conservation laws for differential systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 202-210. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a18/
[1] E. Noether, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl., 1918, no. 2, 235–257 | Zbl
[2] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl
[3] J. Hanc, S. Tuleja, M. Hancova, Amer. J. Phys., 72:4 (2004), 428–435 | DOI | MR | Zbl
[4] N. H. Ibragimov, T. Kolsrud, Nonlinear Dynam., 36:1 (2004), 29–40 | DOI | MR | Zbl
[5] S. C. Anco, G. Bluman, European J. Appl. Math., 13:5 (2002), 545–566 ; 567–585 | DOI | MR | Zbl | DOI | MR | Zbl
[6] T. Wolf, European J. Appl. Math., 13:2 (2002), 129–152 | DOI | MR | Zbl
[7] A. H. Kara, F. M. Mahomed, Internat. J. Theoret. Phys., 39:1 (2000), 23–40 | DOI | MR | Zbl
[8] I. M. Anderson, J. Pohjanpelto, Math. Proc. Cambridge Philos. Soc., 120:2 (1996), 369–384 | DOI | MR | Zbl
[9] A. G. Meshkov, Izv. vuzov. Fizika, 38:7 (1995), 9–14 | DOI | MR | Zbl
[10] V. Rosenhaus, G. H. Katzin, J. Math. Phys., 35:4 (1994), 1998–2012 | DOI | MR | Zbl
[11] A. M. Vinogradov (ed.), Symmetries of partial differential equations. Conservation Laws–Applications–Algorithms., Springer, Dordrecht, 1989 | MR | MR | MR | Zbl
[12] A. M. Vinogradov, Acta Appl. Math., 2:1 (1984), 21–78 | DOI | MR | Zbl
[13] R. Jackiw, N. S. Manton, Ann. Phys., 127:2 (1980), 257–273 | DOI | MR
[14] N. H. Ibragimov (ed.), Lie Group Analysis of Differential Equations, V. 1–3, CRC, Boca Raton, 1994 ; 1995 ; 1996 | MR | Zbl | MR | Zbl | MR
[15] V. Rosenhaus, J. Math. Phys., 43:12 (2002), 6129–6150 | DOI | MR | Zbl
[16] V. Rosenhaus, Rep. Math. Phys., 51:1 (2003), 71–86 | DOI | MR | Zbl
[17] V. Rosenhaus, J. Nonlinear Math. Phys., 13:2 (2006), 255–270 | DOI | MR | Zbl
[18] V. Rosenhaus, J. Phys. A, 39:24 (2006), 7693–7703 | DOI | MR | Zbl
[19] V. Rozenkhaus, TMF, 144:1 (2005), 190–198 | DOI | MR
[20] A. V. Zhiber, A. B. Shabat, Dokl. AN SSSR, 247:5 (1979), 1103–1107 | MR
[21] A. V. Zhiber, N. Kh. Ibragimov, A. B. Shabat, Dokl. AN SSSR, 249:1 (1979), 26–29 | MR | Zbl
[22] A. V. Zhiber, V. V. Sokolov, UMN, 56:1(337) (2001), 63–106 | DOI | MR | Zbl
[23] V. V. Sokolov, A. V. Zhiber, Phys. Lett. A, 208:4–6 (1995), 303–308 | DOI | MR | Zbl
[24] I. M. Anderson, M. Juráš, Duke Math. J., 89:2 (1997), 351–375 | DOI | MR | Zbl
[25] V. Rozenkhaus, TMF, 151:3 (2007), 518–528 | DOI | MR | Zbl
[26] V. V. Zharinov, “Low-dimensional conservation laws of PDE”, Izbrannye voprosy matematicheskoi fiziki i analiza, Tr. MIAN, 203, 1994, 478–493 | MR | Zbl
[27] J. Rosen, Some Properties of the Euler–Lagrange Operators, Preprint TAUP-269-72, Tel Aviv Univ., Tel Aviv, 1972
[28] M. V. Pavlov, J. Phys. A, 38:17 (2005), 3823–3840 | DOI | MR | Zbl
[29] M. V. Pavlov, TMF, 150:2 (2007), 263–285 | DOI | MR | Zbl
[30] A. Das, Z. Popowicz, Phys. Lett. A, 296:1 (2002), 15–26 | DOI | MR | Zbl