Spectral analysis of the elliptic sine-Gordon equation in the quarter plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 189-201 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the elliptic sine-Gordon equation in the quarter plane using a spectral transform approach. We determine the Riemann–Hilbert problem associated with well-posed boundary value problems in this domain and use it to derive a formal representation of the solution. Our analysis is based on a generalization of the usual inverse scattering transform recently introduced by Fokas for studying linear elliptic problems.
Mots-clés : elliptic sine-Gordon equation
Keywords: nonlinear boundary value problem, Riemann–Hilbert problem.
@article{TMF_2009_160_1_a17,
     author = {B. Pelloni},
     title = {Spectral analysis of the~elliptic {sine-Gordon} equation in the~quarter plane},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {189--201},
     year = {2009},
     volume = {160},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a17/}
}
TY  - JOUR
AU  - B. Pelloni
TI  - Spectral analysis of the elliptic sine-Gordon equation in the quarter plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 189
EP  - 201
VL  - 160
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a17/
LA  - ru
ID  - TMF_2009_160_1_a17
ER  - 
%0 Journal Article
%A B. Pelloni
%T Spectral analysis of the elliptic sine-Gordon equation in the quarter plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 189-201
%V 160
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a17/
%G ru
%F TMF_2009_160_1_a17
B. Pelloni. Spectral analysis of the elliptic sine-Gordon equation in the quarter plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 189-201. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a17/

[1] E. Sh. Gutshabash, V. D. Lipovskii, Zap. nauchn. sem. POMI, 180 (1990), 53–62 | DOI | MR

[2] A. B. Borisov, V. V. Kiseliev, Inverse Problems, 5:6 (1989), 959–982 | DOI | MR | Zbl

[3] A. S. Fokas, A Unified Approach to Boundary Value Problems, CBMS-NSF Reg. Conf. Ser. in Appl. Math., 78, SIAM, Philadelphia, PA, 2008 | MR | Zbl

[4] A. S. Fokas, Proc. R. Soc. Lond. Ser. A, 453:1962 (1997), 1411–1443 | DOI | MR | Zbl

[5] A. S. Fokas, Comm. Math. Phys., 230:1 (2002), 1–39 | DOI | MR | Zbl

[6] A. S. Fokas, Nonlinearity, 17:4 (2004), 1521–1534 | DOI | MR | Zbl

[7] A. S. Fokas, Proc. R. Soc. Lond. Ser. A, 457:2006 (2001), 371–393 | DOI | MR | Zbl

[8] A. S. Fokas, E. Spence, Novel analytical and numerical methods for elliptic boundary value problems, preprint, 2008 | MR

[9] Y. A. Antipov, A. S. Fokas, Math. Proc. Cambridge Philos Soc., 138:2 (2005), 339–365 | DOI | MR | Zbl