Relativistic Burgers and nonlinear Schrödinger equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 178-188
Cet article a éte moissonné depuis la source Math-Net.Ru
We construct relativistic complex Burgers–Schrödinger and nonlinear Schrödinger equations. In the nonrelativistic limit, they reduce to the standard Burgers and nonlinear Schrödinger equations and are integrable through all orders of relativistic corrections.
Keywords:
semirelativistic nonlinear Schrödinger equation, relativistic Burgers–Schrödinger equation, nonlinear Schrödinger hierarchy, relativistic dispersion, recursion operator.
@article{TMF_2009_160_1_a16,
author = {O. K. Pashaev},
title = {Relativistic {Burgers} and nonlinear {Schr\"odinger} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {178--188},
year = {2009},
volume = {160},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a16/}
}
O. K. Pashaev. Relativistic Burgers and nonlinear Schrödinger equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 178-188. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a16/
[1] L. J. Nickisch, L. Durand, B. Durand, Phys. Rev. D, 30:3 (1984), 660–670 | DOI
[2] J. Fröhlich, E. Lenzmann, Comm. Pure Appl. Math., 60:11 (2007), 1691–1705 | DOI | MR | Zbl
[3] Y. Cho, T. Ozawa, SIAM J. Math. Anal., 38:4 (2006), 1060–1074 | DOI | MR | Zbl
[4] O. K. Pashaev, Z. N. Gyurkan, TMF, 152:1 (2007), 163–176 | DOI | MR | Zbl
[5] E. Schrödinger, Ann. Phys., 384:4 (1926), 361–376 | DOI | Zbl
[6] M. Ablowitz, D. Kaup, A. Newell, H. Segur, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl