Seeking (and finding) Lagrangians
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 168-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that for any second-order ordinary differential equation (ODE), a Lagrangian always exists, and the key to its construction is the Jacobi last multiplier. Is it possible to find Lagrangians for first-order systems of ODEs or for higher-order ODEs? We show that the Jacobi last multiplier can also play a major role in this case.
Keywords: Lagrangian, first integral
Mots-clés : Jacobi last multiplier.
@article{TMF_2009_160_1_a15,
     author = {M. C. Nucci},
     title = {Seeking (and finding) {Lagrangians}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {168--177},
     year = {2009},
     volume = {160},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a15/}
}
TY  - JOUR
AU  - M. C. Nucci
TI  - Seeking (and finding) Lagrangians
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 168
EP  - 177
VL  - 160
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a15/
LA  - ru
ID  - TMF_2009_160_1_a15
ER  - 
%0 Journal Article
%A M. C. Nucci
%T Seeking (and finding) Lagrangians
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 168-177
%V 160
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a15/
%G ru
%F TMF_2009_160_1_a15
M. C. Nucci. Seeking (and finding) Lagrangians. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 168-177. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a15/

[1] P. Havas, Nuovo Cimento, 5, Suppl. 3 (1957), 363–388 | DOI | MR | Zbl

[2] H. Goenner, Gen. Relavity Gravitation, 37:7 (2005), 1331–1334 | DOI | MR | Zbl

[3] E. Noether, Gött. Nachr., 2 (1918), 235–257 ; Transport Theory Statist. Phys., 1:3 (1971), 186–207 | Zbl | DOI | MR | Zbl

[4] P. A. M. Dirak, “Lagranzhian v kvantovoi mekhanike”, Sobranie nauchnykh trudov. T. II. Kvantovaya teoriya, nauchnye stati 1924–1947, eds. A. D. Sukhanov, Fizmatlit, M., 2003, 573–579 | Zbl

[5] R. P. Feynman, P. A. M. Dirac, Feynman's Thesis – a New Approach to Quantum Theory, ed. L. M. Brown, World Sci., Singapore, 2005 | MR | Zbl

[6] R. P. Feynman, Science, 153:3737 (1966), 699–708 | DOI

[7] E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[8] C. G. J. Jacobi, J. Reine Angew. Math., 27 (1844), 199–268 | DOI | MR | Zbl

[9] C. G. J. Jacobi, J. Reine Angew. Math., 29 (1845), 213–279 ; 333–376 | DOI | MR | Zbl | Zbl

[10] K. Yakobi, Lektsii po dinamike, Gostekhizdat, M.-L., 1936 | Zbl

[11] M. C. Nucci, J. Nonlinear Math. Phys., 12:2 (2005), 284–304 | DOI | MR | Zbl

[12] M. C. Nucci, K. M. Tamizhmani, Using an old method of Jacobi to derive Lagrangians: a nonlinear dynamical system with variable coefficients, arxiv: 0807.2791 | MR

[13] T. Hawkins, Arch. Hist. Exact Sci., 42:3 (1991), 187–278 | DOI | MR | Zbl

[14] S. Lie, Forh. Christiania, 1874, 255–274 | Zbl

[15] S. Lie, Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen, Teubner, Leipzig, 1912 | Zbl

[16] L. Bianchi, Lezioni sulla teoria dei gruppi continui finiti di trasformazioni, Spoerri, Pisa, 1918 | Zbl

[17] M. C. Nucci, P. G. L. Leach, J. Math. Phys., 49:7 (2008), 073517 | DOI | MR | Zbl

[18] E. H. Kerner, Gibbs Ensemble: Biological Ensemble, Gordon and Breach, New York, 1971

[19] S. L. Trubatch, A. Franco, J. Theoret. Biol., 48:2 (1974), 299–324 | DOI | MR

[20] M. E. Fels, Trans. Amer. Math. Soc., 348:12 (1996), 5007–5029 | DOI | MR | Zbl

[21] N. Euler, Private communication

[22] A. T. Chwang, T. Yao-Tsu Wu, J. Fluid Mech., 67:4 (1975), 787–815 | DOI | MR | Zbl

[23] R. Camassa, L. Zhao, R. M. McLaughlin, Linear shear flow blocking by a fixed sphere in the Stokes regime, preprint, 2008

[24] N. H. Ibragimov, S. V. Meleshko, S. Suksern, J. Phys. A, 41:23 (2008), 235206 | DOI | MR | Zbl

[25] M. C. Nucci, “Interactive REDUCE programs for calculating Lie point, non-classical, Lie–Bäcklund, and approximate symmetries of differential equations: manual and floppy disk”, CRC Handbook of Lie Group Analysis of Differential Equations. V. 3. New Trends in Theoretical Developments and Computational Methods, ed. N. H. Ibragimov, CRC Press, Boca Raton, 1996, 415–481 | MR | Zbl

[26] M. C. Nucci, P. G. L. Leach, J. Math. Phys., 48:12 (2007), 123510 | DOI | MR | Zbl

[27] M. C. Nucci, K. M. Tamizhmani, Lagrangians for biological models: the method of Jacobi last multiplier, preprint, 2009 | MR

[28] M. C. Nucci, A. M. Arthurs, On the inverse problem of calculus of variations for fourth-order equations, preprint, 2009 | MR

[29] M. Leo, R. A. Leo, G. Soliani, L. Solombrino, L. Martina, Phys. Rev. D, 27:6 (1983), 1406–1408 | DOI | MR

[30] N. Petersson, N. Euler, M. Euler, Stud. Appl. Math., 112:2 (2004), 201–225 | DOI | MR | Zbl

[31] N. Eiler, P. G. Lich, TMF, 159:1 (2009), 64–80 | DOI | MR