Seeking (and finding) Lagrangians
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 168-177

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that for any second-order ordinary differential equation (ODE), a Lagrangian always exists, and the key to its construction is the Jacobi last multiplier. Is it possible to find Lagrangians for first-order systems of ODEs or for higher-order ODEs? We show that the Jacobi last multiplier can also play a major role in this case.
Keywords: Lagrangian, first integral
Mots-clés : Jacobi last multiplier.
@article{TMF_2009_160_1_a15,
     author = {M. C. Nucci},
     title = {Seeking (and finding) {Lagrangians}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {168--177},
     publisher = {mathdoc},
     volume = {160},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a15/}
}
TY  - JOUR
AU  - M. C. Nucci
TI  - Seeking (and finding) Lagrangians
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 168
EP  - 177
VL  - 160
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a15/
LA  - ru
ID  - TMF_2009_160_1_a15
ER  - 
%0 Journal Article
%A M. C. Nucci
%T Seeking (and finding) Lagrangians
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 168-177
%V 160
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a15/
%G ru
%F TMF_2009_160_1_a15
M. C. Nucci. Seeking (and finding) Lagrangians. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 168-177. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a15/