Proper versus improper mixtures: Toward a quaternionic quantum mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 157-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The density operators obtained by taking partial traces represent improper mixtures of subsystems of a compound physical system because the coefficients in the convex sums expressing them never bear the ignorance interpretation. Assigning states to these subsystems is consequently problematic in standard quantum mechanics (subentity problem). In the semantic realism interpretation of quantum mechanics, it is instead proposed to consider improper mixtures true nonpure states conceptually distinct from proper mixtures. Based on this proposal, we show that proper and improper mixtures can be represented by different density operators in the quaternionic formulation of quantum mechanics and can hence be distinguished even from a mathematical standpoint. We provide a simple example related to the quantum theory of measurement.
Keywords: quaternionic quantum mechanics, proper mixture, improper mixture, subentity problem, semantic realism.
@article{TMF_2009_160_1_a14,
     author = {F. Masillo and G. Scolarici and S. Sozzo},
     title = {Proper versus improper mixtures: {Toward} a~quaternionic quantum mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {157--167},
     year = {2009},
     volume = {160},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a14/}
}
TY  - JOUR
AU  - F. Masillo
AU  - G. Scolarici
AU  - S. Sozzo
TI  - Proper versus improper mixtures: Toward a quaternionic quantum mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 157
EP  - 167
VL  - 160
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a14/
LA  - ru
ID  - TMF_2009_160_1_a14
ER  - 
%0 Journal Article
%A F. Masillo
%A G. Scolarici
%A S. Sozzo
%T Proper versus improper mixtures: Toward a quaternionic quantum mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 157-167
%V 160
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a14/
%G ru
%F TMF_2009_160_1_a14
F. Masillo; G. Scolarici; S. Sozzo. Proper versus improper mixtures: Toward a quaternionic quantum mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 157-167. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a14/

[1] J. S. Bell, Rev. Modern Phys., 38:3 (1966), 447–452 | DOI | MR | Zbl

[2] S. Kochen, E. P. Specker, J. Math. Mech., 17 (1967), 59–87 | MR | Zbl

[3] J. S. Bell, Physics, 1964, no. 1, 195–200; “On the Einstein–Poldolsky–Rosen paradox”, Speakable and Unspeakable in Quantum Mechanics, Cambridge Univ. Press, Cambridge, 1987, 14–21 | MR

[4] P. Busch, P. J. Lahti, P. Mittelstaedt, The Quantum Theory of Measurement, Lecture Notes in Phys. New Ser. m: Monogr., 2, Springer, Berlin, 1991 | DOI | MR | Zbl

[5] P. Busch, A. Shimony, Stud. Hist. Philos. Modern Phys. B, 27:4 (1996), 397–404 | DOI | MR | Zbl

[6] K.-E. Hellwig, K. Kraus, Comm. Math. Phys., 11:3 (1969), 214–220 | DOI | MR | Zbl

[7] B. D'Espagnat, Conceptual Foundations of Quantum Mechanics, Math. Phys. Monogr. Ser., 20, Benjamin, Reading, MA, 1976 | MR

[8] D. Aerts, Internat. J. Theoret. Phys., 38:1 (1999), 289–358 | DOI | MR | Zbl

[9] D. Aerts, “Quantum mechanics: structures, axioms and paradoxes”, Quantum Physics and the Nature of Reality, Einstein Meets Magritte, 7, eds. D. Aerts, J. Pykacz, Kluwer, Dordrecht, 1999, 141–205 | MR | Zbl

[10] D. Aerts, Internat. J. Theoret. Phys., 39:3 (2000), 485–496 | MR | Zbl

[11] K. Garola, S. Sotstso, TMF, 152:2 (2007), 248–264 | DOI | MR | Zbl

[12] C. Garola, L. Solombrino, Found. Phys., 26:9 (1996), 1121–1164 | DOI | MR

[13] C. Garola, L. Solombrino, Found. Phys., 26:10 (1996), 1329–1356 | DOI | MR

[14] C. Garola, “Against “paradoxes”: a new quantum philosophy for quantum mechanics”, Quantum Physics and the Nature of Reality, Einstein Meets Magritte, 7, eds. D. Aerts, J. Pykacz, Kluwer, Dordrecht, 1999, 103–140 | MR | Zbl

[15] C. Garola, Found. Phys., 30:9 (2000), 1539–1565 | DOI | MR

[16] C. Garola, Found. Phys., 32:10 (2002), 1597–1615 | DOI | MR

[17] G. Birkhoff, J. von Neumann, Ann. Math., 37:4 (1936), 823–843 | DOI | MR | Zbl

[18] E. C.-G. Stueckelberg, Helv. Phys. Acta, 33 (1960), 727–752 ; 35 (1962), 568–591 ; E. C.-G. Stueckelberg, M. Guenin, Helv. Phys. Acta, 34 (1961), 621–628 | MR | Zbl | MR | Zbl | Zbl

[19] D. Finkelstein, J. M. Jauch, S. Sciminovich, D. Speiser, J. Math. Phys., 3:2 (1962), 207–220 ; 4:1 (1963), 136–140 ; 4:6, 788–796 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[20] S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, Internat. Ser. Monogr. Phys., 88, Oxford Univ. Press, New York, 1995 | MR | Zbl

[21] A. Kossakowski, Rep. Math. Phys., 46:3 (2000), 393–397 | DOI | MR | Zbl

[22] G. Scolarici, L. Solombrino, “Complex entanglement and quaternionic separability”, The Foundations of Quantum Mechanics. Historical Analysis and Open Questions (Cesena, Italy, 2004), eds. C. Garola, A. Rossi, S. Sozzo, World Sci., Singapore, 2006, 301–310 | Zbl

[23] M. Asorey, G. Scolarici, J. Phys. A, 39:31 (2006), 9727–9741 | DOI | MR | Zbl

[24] M. Asorei, D. Skolarichi, L. Solombrino, TMF, 151:3 (2007), 360–370 | DOI | MR | Zbl

[25] M. Asorey, G. Scolarici, L. Solombrino, Phys. Rev. A, 76:1 (2007), 012111 | DOI

[26] F. Zhang, Linear Algebra Appl., 251 (1997), 21–57 | DOI | MR | Zbl