Quantum Fourier transform and tomographic R\'enyi entropic inequalities
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 143-156

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the Rényi entropy associated with spin tomograms of quantum states satisfies new inequalities that depend on the quantum Fourier transform. We obtain the limiting inequality for the von Neumann entropy of quantum spin states and a new kind of entropy associated with the quantum Fourier transform. We consider possible connections with subadditivity and strong subadditivity conditions for tomographic entropies and von Neumann entropies.
Keywords: uncertainty relation, entropy, quantum tomography
Mots-clés : quantum Fourier transform.
@article{TMF_2009_160_1_a13,
     author = {M. A. Man'ko and V. I. Man'ko},
     title = {Quantum {Fourier} transform and tomographic {R\'enyi} entropic inequalities},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {143--156},
     publisher = {mathdoc},
     volume = {160},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a13/}
}
TY  - JOUR
AU  - M. A. Man'ko
AU  - V. I. Man'ko
TI  - Quantum Fourier transform and tomographic R\'enyi entropic inequalities
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 143
EP  - 156
VL  - 160
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a13/
LA  - ru
ID  - TMF_2009_160_1_a13
ER  - 
%0 Journal Article
%A M. A. Man'ko
%A V. I. Man'ko
%T Quantum Fourier transform and tomographic R\'enyi entropic inequalities
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 143-156
%V 160
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a13/
%G ru
%F TMF_2009_160_1_a13
M. A. Man'ko; V. I. Man'ko. Quantum Fourier transform and tomographic R\'enyi entropic inequalities. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 143-156. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a13/