A few- and subcycle pulse evolution equation in a cubic nonlinear medium
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 112-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive a few-cycle and subcycle pulse evolution equation from the nonlinear wave equation for a cubic medium. We obtain the model equation for the real electric field and use it to analyze the propagation characteristics of a single-cycle pulse of wavelength $0.8\,\mu$m in one spatial dimension.
Keywords: evolution equation for single-cycle pulses, Kerr medium, nonlinear optics.
@article{TMF_2009_160_1_a10,
     author = {A. Kumar},
     title = {A~few- and subcycle pulse evolution equation in a~cubic nonlinear medium},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {112--121},
     year = {2009},
     volume = {160},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a10/}
}
TY  - JOUR
AU  - A. Kumar
TI  - A few- and subcycle pulse evolution equation in a cubic nonlinear medium
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 112
EP  - 121
VL  - 160
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a10/
LA  - ru
ID  - TMF_2009_160_1_a10
ER  - 
%0 Journal Article
%A A. Kumar
%T A few- and subcycle pulse evolution equation in a cubic nonlinear medium
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 112-121
%V 160
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a10/
%G ru
%F TMF_2009_160_1_a10
A. Kumar. A few- and subcycle pulse evolution equation in a cubic nonlinear medium. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 112-121. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a10/

[1] J. H. B. Nijhof, H. A. Ferverda, B. J. Hoenders, Pure Appl. Opt., 4:3 (1995), 199–218 | DOI

[2] T. Brabec, F. Krausz, Phys. Rev. Lett., 78:17 (1997), 3282–3285 | DOI

[3] V. G. Bespalov, S. A. Kozlov, Yu. A. Shpolyanskiy, I. A. Walmsley, Phys. Rev. A, 66:1 (2002), 013811 | DOI

[4] T. Schäfer, C. E. Wayne, Physica D, 196:1–2 (2004), 90–105 | DOI | MR | Zbl

[5] T. Tsurumi, J. Phys. Soc. Japan, 75:2 (2006), 024002 | DOI

[6] M. B. Johnston, D. M. Whittaker, A. Dowd, A. G. Devies, E. H. Linfield, X. Li, D. A. Ritchie, Opt. Lett., 27:21 (2002), 1935–1937 | DOI

[7] T. Taniuti, C.-C. Wei, J. Phys. Soc. Japan, 24:4 (1968), 941–946 | DOI

[8] S. Diddams, J.-C. Diels, J. Opt. Soc. Amer. B, 13:6 (1996), 1120–1129 | DOI

[9] M. C. Stefanovic, A. S. Panajotovic, D. M. Milovic, “Pulse deformation due to fourth order dispersion and inband interference”, Proc. 8th Internat. Conf. Telecomm. Modern Satellite, Cable and Broadcasting Serv., TELSIKS, 2007 (September 26–28, 2007, Niš, Serbia), Univ. Niš, Serbia, 2007, 609–612 | DOI