A class of multidimensional integrable hierarchies and their reductions
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 15-22
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a class of multidimensional integrable hierarchies connected with the commutativity of general (unreduced) $(N+1)$-dimensional vector fields containing a derivative with respect to a spectral variable. These hierarchies are determined by a generating equation, equivalent to the Lax–Sato form. We present a dressing scheme based on a nonlinear vector Riemann problem for this class. As characteristic examples, we consider the hierarchies connected with the Manakov–Santini equation and the Dunajski system.
Keywords:
integrable hierarchy, dispersionless equation, heavenly equation, dressing method.
@article{TMF_2009_160_1_a1,
author = {L. V. Bogdanov},
title = {A class of multidimensional integrable hierarchies and their reductions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {15--22},
publisher = {mathdoc},
volume = {160},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a1/}
}
L. V. Bogdanov. A class of multidimensional integrable hierarchies and their reductions. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 15-22. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a1/