A class of multidimensional integrable hierarchies and their reductions
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 15-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a class of multidimensional integrable hierarchies connected with the commutativity of general (unreduced) $(N+1)$-dimensional vector fields containing a derivative with respect to a spectral variable. These hierarchies are determined by a generating equation, equivalent to the Lax–Sato form. We present a dressing scheme based on a nonlinear vector Riemann problem for this class. As characteristic examples, we consider the hierarchies connected with the Manakov–Santini equation and the Dunajski system.
Keywords: integrable hierarchy, dispersionless equation, heavenly equation, dressing method.
@article{TMF_2009_160_1_a1,
     author = {L. V. Bogdanov},
     title = {A class of multidimensional integrable hierarchies and their reductions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {15--22},
     year = {2009},
     volume = {160},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a1/}
}
TY  - JOUR
AU  - L. V. Bogdanov
TI  - A class of multidimensional integrable hierarchies and their reductions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 15
EP  - 22
VL  - 160
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a1/
LA  - ru
ID  - TMF_2009_160_1_a1
ER  - 
%0 Journal Article
%A L. V. Bogdanov
%T A class of multidimensional integrable hierarchies and their reductions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 15-22
%V 160
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a1/
%G ru
%F TMF_2009_160_1_a1
L. V. Bogdanov. A class of multidimensional integrable hierarchies and their reductions. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 15-22. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a1/

[1] L. V. Bogdanov, V. S. Dryuma, S. V. Manakov, On the dressing method for Dunajski anti-self-duality equation, arXiv: nlin/0612046

[2] L. V. Bogdanov, V. S. Dryuma, S. V. Manakov, J. Phys. A, 40:48 (2007), 14383–14393 | DOI | MR | Zbl

[3] S. V. Manakov, P. M. Santini, Pisma v ZhETF, 83:10 (2006), 534–538 | DOI

[4] S. V. Manakov, P. M. Santini, TMF, 152:1 (2007), 147–156 | DOI | MR | Zbl

[5] S. V. Manakov, P. M. Santini, J. Phys. A, 41:5 (2008), 055204 | DOI | MR | Zbl

[6] M. Dunajski, Proc. R. Soc. Lond. Ser. A, 458:2021 (2002), 1205–1222 | DOI | MR | Zbl

[7] K. Takasaki, J. Math. Phys., 30:7 (1989), 1515–1521 | DOI | MR | Zbl

[8] K. Takasaki, J. Math. Phys., 31:8 (1990), 1877–1888 | DOI | MR | Zbl

[9] M. V. Pavlov, J. Math. Phys., 44:9 (2003), 4134–4156 | DOI | MR | Zbl

[10] M. Dunajski, J. Geom. Phys., 51:1 (2004), 126–137 | DOI | MR | Zbl

[11] L. Martínez Alonso, A. B. Shabat, Phys. Lett. A, 300:1 (2002), 58–64 | DOI | MR | Zbl

[12] L. Martines Alonso, A. B. Shabat, TMF, 140:2 (2004), 216–229 | DOI | MR

[13] K. Takasaki, Phys. Lett. B, 285:3 (1992), 187–190 | DOI | MR