Mots-clés : coadjoint orbit.
@article{TMF_2009_160_1_a0,
author = {Yu. N. Bernatskaya and P. I. Holod},
title = {Topological excitations in a~two-dimensional spin system with high spin $s\ge1$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {4--14},
year = {2009},
volume = {160},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a0/}
}
TY - JOUR AU - Yu. N. Bernatskaya AU - P. I. Holod TI - Topological excitations in a two-dimensional spin system with high spin $s\ge1$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 4 EP - 14 VL - 160 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a0/ LA - ru ID - TMF_2009_160_1_a0 ER -
Yu. N. Bernatskaya; P. I. Holod. Topological excitations in a two-dimensional spin system with high spin $s\ge1$. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 4-14. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a0/
[1] N. D. Mermin, H. Wagner, Phys. Rev. Lett, 17:22 (1966), 1133–1136 | DOI | MR
[2] A. A. Belavin, A. M. Polyakov, Pisma v ZhETF, 22:10 (1975), 503–506
[3] N. N. Bogolyubov, N. N. Bogolyubov (ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR | MR | MR | Zbl
[4] V. M. Matveev, ZhETF, 65 (1973), 1626
[5] M. Nauciel-Bloch, G. Sarma, A. Castets, Phys. Rev. B, 5:11 (1972), 4603–4609 | DOI
[6] K. Buchta, G. Fáth, Ö. Legeza, J. Sólyom, Phys. Rev. B, 72:5 (2005), 054433 | DOI
[7] R. F. Picken, J. Math. Phys., 31:3 (1990), 616–638 | DOI | MR | Zbl
[8] J. Bernatska, P. Holod, “Geometry and topology of coadjoint orbits of semisimple Lie groups”, Geometry, Integrability and Quantization, IX, Proc. 9th Int. Conf. on Geometry, Integrability and Quantization (June 8–13, 2007, Varna, Bulgaria), ed. I. M. Mladenov, Softex, Sofia, 2008, 146–166 ; arXiv: 0801.2913 | MR | Zbl
[9] J. Bernatska, P. Holod, J. Phys. A, 42:7 (2009), 075401 | DOI | MR | Zbl