Topological excitations in a two-dimensional spin system with high spin $s\ge1$
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 4-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a class of topological excitations of a mean field in a two-dimensional spin system represented by a quantum Heisenberg model with high powers of the exchange interaction. The quantum model is associated with a classical model (the continuous classical analogue) based on a Landau–Lifshitz-like equation, which describes large-scale fluctuations of the mean field. On the other hand, the classical model in the case of spin $s$ is a Hamiltonian system on a coadjoint orbit of the unitary group $SU(2s+1)$. We construct a class of mean-field configurations that can be interpreted as topological excitations because they have fixed topological charges. Such excitations change their shapes and grow, conserving energy.
Keywords: order parameter, mean field, effective Hamiltonian
Mots-clés : coadjoint orbit.
@article{TMF_2009_160_1_a0,
     author = {Yu. N. Bernatskaya and P. I. Holod},
     title = {Topological excitations in a~two-dimensional spin system with high spin $s\ge1$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {4--14},
     year = {2009},
     volume = {160},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a0/}
}
TY  - JOUR
AU  - Yu. N. Bernatskaya
AU  - P. I. Holod
TI  - Topological excitations in a two-dimensional spin system with high spin $s\ge1$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 4
EP  - 14
VL  - 160
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a0/
LA  - ru
ID  - TMF_2009_160_1_a0
ER  - 
%0 Journal Article
%A Yu. N. Bernatskaya
%A P. I. Holod
%T Topological excitations in a two-dimensional spin system with high spin $s\ge1$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 4-14
%V 160
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a0/
%G ru
%F TMF_2009_160_1_a0
Yu. N. Bernatskaya; P. I. Holod. Topological excitations in a two-dimensional spin system with high spin $s\ge1$. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 4-14. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a0/

[1] N. D. Mermin, H. Wagner, Phys. Rev. Lett, 17:22 (1966), 1133–1136 | DOI | MR

[2] A. A. Belavin, A. M. Polyakov, Pisma v ZhETF, 22:10 (1975), 503–506

[3] N. N. Bogolyubov, N. N. Bogolyubov (ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR | MR | MR | Zbl

[4] V. M. Matveev, ZhETF, 65 (1973), 1626

[5] M. Nauciel-Bloch, G. Sarma, A. Castets, Phys. Rev. B, 5:11 (1972), 4603–4609 | DOI

[6] K. Buchta, G. Fáth, Ö. Legeza, J. Sólyom, Phys. Rev. B, 72:5 (2005), 054433 | DOI

[7] R. F. Picken, J. Math. Phys., 31:3 (1990), 616–638 | DOI | MR | Zbl

[8] J. Bernatska, P. Holod, “Geometry and topology of coadjoint orbits of semisimple Lie groups”, Geometry, Integrability and Quantization, IX, Proc. 9th Int. Conf. on Geometry, Integrability and Quantization (June 8–13, 2007, Varna, Bulgaria), ed. I. M. Mladenov, Softex, Sofia, 2008, 146–166 ; arXiv: 0801.2913 | MR | Zbl

[9] J. Bernatska, P. Holod, J. Phys. A, 42:7 (2009), 075401 | DOI | MR | Zbl