Topological excitations in a~two-dimensional spin system with high spin $s\ge1$
Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 4-14
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a class of topological excitations of a mean field in a two-dimensional spin system represented by a quantum Heisenberg model with high powers of the exchange interaction. The quantum model is associated with a classical model (the continuous classical analogue) based on a Landau–Lifshitz-like equation, which describes large-scale fluctuations of the mean field. On the other hand, the classical model in the case of spin $s$ is a Hamiltonian system on a coadjoint orbit of the unitary group $SU(2s+1)$. We construct a class of mean-field configurations that can be interpreted as topological excitations because they have fixed topological charges. Such excitations change their shapes and grow, conserving energy.
Keywords:
order parameter, mean field, effective Hamiltonian
Mots-clés : coadjoint orbit.
Mots-clés : coadjoint orbit.
@article{TMF_2009_160_1_a0,
author = {Yu. N. Bernatskaya and P. I. Holod},
title = {Topological excitations in a~two-dimensional spin system with high spin $s\ge1$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {4--14},
publisher = {mathdoc},
volume = {160},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a0/}
}
TY - JOUR AU - Yu. N. Bernatskaya AU - P. I. Holod TI - Topological excitations in a~two-dimensional spin system with high spin $s\ge1$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 4 EP - 14 VL - 160 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a0/ LA - ru ID - TMF_2009_160_1_a0 ER -
Yu. N. Bernatskaya; P. I. Holod. Topological excitations in a~two-dimensional spin system with high spin $s\ge1$. Teoretičeskaâ i matematičeskaâ fizika, Tome 160 (2009) no. 1, pp. 4-14. http://geodesic.mathdoc.fr/item/TMF_2009_160_1_a0/