Nonlocal symmetries and reductions for some ordinary differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 428-437 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive nonlocal symmetries for ordinary differential equations (ODEs). These symmetries are derived by embedding the ODE in an auxiliary system. Using these symmetries, we find that the order of the ODE can be reduced even if it does not admit point symmetries.
Keywords: conditional symmetry, nonlocal symmetry, ordinary differential equation.
@article{TMF_2009_159_3_a9,
     author = {M. L. Gandarias},
     title = {Nonlocal symmetries and reductions for some ordinary differential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {428--437},
     year = {2009},
     volume = {159},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a9/}
}
TY  - JOUR
AU  - M. L. Gandarias
TI  - Nonlocal symmetries and reductions for some ordinary differential equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 428
EP  - 437
VL  - 159
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a9/
LA  - ru
ID  - TMF_2009_159_3_a9
ER  - 
%0 Journal Article
%A M. L. Gandarias
%T Nonlocal symmetries and reductions for some ordinary differential equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 428-437
%V 159
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a9/
%G ru
%F TMF_2009_159_3_a9
M. L. Gandarias. Nonlocal symmetries and reductions for some ordinary differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 428-437. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a9/

[1] A. González-López, Phys. Lett. A, 133:4–5 (1988), 190–194 | DOI | MR

[2] I. S. Krasil'shchik, A. M. Vinogradov, Acta Appl. Math., 2:1 (1984), 79–96 | DOI | MR | Zbl

[3] I. S. Krasil'shchik, A. M. Vinogradov, Acta Appl. Math., 15:1–2 (1989), 161–209 | DOI | MR | Zbl

[4] A. M. Vinogradov, I. S. Krasilschik, DAN SSSR, 275:5 (1984), 1044–1049 | MR | Zbl

[5] A. M. Vinogradov, I. S. Krasilschik, DAN SSSR, 253:6 (1980), 1289–1293 | MR | Zbl

[6] G. W. Bluman, G. J. Reid, IMA J. Appl. Math., 40:2 (1988), 87–94 | DOI | MR | Zbl

[7] M. L. Gandarias, E. Medina, C. Muriel, Nonlinear Anal., 47:8 (2001), 5167–5178 | DOI | MR | Zbl

[8] M. L. Gandarias, E. Medina, C. Muriel, J. Nonlinear Math. Phys., 9, Suppl. 1 (2002), 47–58 | DOI | MR

[9] I. Sh. Akhatov, R. K. Gazizov, N. Kh. Ibragimov, “Nelokalnye simmetrii. Evristicheskii podkhod”, Itogi nauki i tekhniki. Ser. Sovrem. probl. mat. Nov. dostizh., 34, VINITI, M., 1989, 3–83 | DOI | MR

[10] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl

[11] C. Muriel, J. L. Romero, IMA J. Appl. Math., 66:2 (2001), 111–125 | DOI | MR | Zbl

[12] D. C. Ferraioli, J. Phys. A, 40:21 (2007), 5479–5489 | DOI | MR | Zbl

[13] C. Muriel, J. L. Romero, IMA J. Appl. Math., 72:2 (2007), 191–205 | DOI | MR | Zbl

[14] B. Abraham-Shrauner, K. S. Govinder, P. G. L. Leach, Phys. Lett. A, 203:4 (1995), 169–174 | DOI | MR | Zbl

[15] B. Abraham-Shrauner, IMA J. Appl. Math., 56:3 (1996), 235–252 | DOI | MR | Zbl

[16] B. Abraham-Shrauner, J. Nonlinear Math. Phys., 9, Suppl. 2 (2002), 1–9 | DOI | MR

[17] A. A. Adam, F. M. Mahomed, IMA J. Appl. Math., 60:2 (1998), 187–198 | DOI | MR | Zbl

[18] R. M. Edelstein, K. S. Govinder, F. M. Mahomed, J. Phys. A, 34:6 (2001), 1141–1152 | DOI | MR | Zbl

[19] C. Géromini, M. R. Feix, P. G. L. Leach, J. Phys. A, 34:47 (2001), 10109–10117 | DOI | MR | Zbl

[20] N. H. Ibragimov, J. Math. Anal. Appl., 318:2 (2006), 742–757 | DOI | MR | Zbl