Reciprocal Bäcklund transformations of autonomous evolution equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 418-427 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the construction of reciprocal Bäcklund transformations for evolution equations using integrating factors of zeroth and higher orders with their corresponding conservation laws. As an example, we consider the Harry Dym equation and the Schwarzian KdV equation.
Keywords: nonlinear evolution equation, Bäcklund transformation, conservation law, integrable evolution equation.
@article{TMF_2009_159_3_a8,
     author = {M. Euler and N. Euler and S. Lundberg},
     title = {Reciprocal {B\"acklund} transformations of autonomous evolution equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {418--427},
     year = {2009},
     volume = {159},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a8/}
}
TY  - JOUR
AU  - M. Euler
AU  - N. Euler
AU  - S. Lundberg
TI  - Reciprocal Bäcklund transformations of autonomous evolution equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 418
EP  - 427
VL  - 159
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a8/
LA  - ru
ID  - TMF_2009_159_3_a8
ER  - 
%0 Journal Article
%A M. Euler
%A N. Euler
%A S. Lundberg
%T Reciprocal Bäcklund transformations of autonomous evolution equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 418-427
%V 159
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a8/
%G ru
%F TMF_2009_159_3_a8
M. Euler; N. Euler; S. Lundberg. Reciprocal Bäcklund transformations of autonomous evolution equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 418-427. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a8/

[1] C. Rogers, W. K. Schief, J. Nonlinear Math. Phys., 12, Suppl. 1 (2005), 548–564 | DOI | MR

[2] A. Haar, Math. Ann., 100:1 (1928), 481–502 | DOI | MR | Zbl

[3] C. Rogers, W. F. Shadwick, Bäcklund Transformations and Their Applications, Math. Sci. Eng., 161, Academic Press, New York, 1982 | MR | Zbl

[4] A. S. Fokas, B. Fuchssteiner, Lett. Nuovo Cimento (2), 28:8 (1980), 299–303 | DOI | MR

[5] A. M. Vinogradov, J. Math. Anal. Appl., 100:1 (1984), 1–40 | DOI | MR | Zbl

[6] A. M. Vinogradov, J. Math. Anal. Appl., 100:1 (1984), 41–129 | DOI | MR | Zbl

[7] V. V. Zharinov, TMF, 68:2 (1986), 163–171 | DOI | MR | Zbl

[8] V. V. Zharinov, Lecture Notes on Geometrical Aspects of Partial Differential Equations, Ser. Sov. East European Math., 9, World Sci., Singapore, 1992 | MR | Zbl

[9] S. C. Anco, G. Bluman, European J. Appl. Math., 13:5 (2002), 545–566 | DOI | MR | Zbl

[10] S. C. Anco, G. Bluman, European J. Appl. Math., 13:5 (2002), 567–585 | DOI | MR | Zbl

[11] A. S. Fokas, Stud. Appl. Math., 77:3 (1987), 253–299 | DOI | MR | Zbl

[12] V. V. Sokolov, A. B. Shabat, “Classification of integrable evolution equations”, Mathematical Physics Reviews, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 4, ed. S. P. Novikov, Harwood Academic, Chur, 1984, 221–280 | MR | Zbl

[13] J. G. Kingston, C. Rogers, Phys. Lett. A, 92:6 (1982), 261–264 | DOI | MR

[14] N. Euler, M. Euler, J. Nonlinear Math. Phys., 8:3 (2001), 342–362 | DOI | MR | Zbl

[15] M. Euler, N. Euler, N. Petersson, Stud. Appl. Math., 111:3 (2003), 315–337 | DOI | MR | Zbl

[16] N. Petersson, N. Euler, M. Euler, Stud. Appl. Math., 112:2 (2004), 201–225 | DOI | MR | Zbl

[17] J. G. Kingston, C. Rogers, D. Woodwall, J. Phys. A, 17:2 (1984), L35–L38 | DOI | MR | Zbl

[18] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetrey approach to classification of integrable equations”, What is Integrability?, Springer Ser. Nonlinear Dynam., ed. V. E. Zakharov, Springer, Berlin, 1991, 115–184 | DOI | MR | Zbl

[19] M. Euler, N. Euler, J. Nonlinear Math. Phys., 14:3 (2007), 313–315 | DOI | MR

[20] M. Euler, J. Nonlinear Math. Phys., 15:2 (2008), 147–151 | DOI | MR | Zbl