Reciprocal transformations for a spectral problem in $2+1$ dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 411-417 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present two reciprocal transformations for a spectral problem in $2+1$ dimensions. Reductions of the transformed equations to $1+1$ dimensions include the Degasperis–Procesi and Vakhnenko–Parkes equations.
Keywords: reciprocal transformation, spectral problem.
@article{TMF_2009_159_3_a7,
     author = {P. G. Estevez},
     title = {Reciprocal transformations for a~spectral problem in $2+1$ dimensions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {411--417},
     year = {2009},
     volume = {159},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a7/}
}
TY  - JOUR
AU  - P. G. Estevez
TI  - Reciprocal transformations for a spectral problem in $2+1$ dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 411
EP  - 417
VL  - 159
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a7/
LA  - ru
ID  - TMF_2009_159_3_a7
ER  - 
%0 Journal Article
%A P. G. Estevez
%T Reciprocal transformations for a spectral problem in $2+1$ dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 411-417
%V 159
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a7/
%G ru
%F TMF_2009_159_3_a7
P. G. Estevez. Reciprocal transformations for a spectral problem in $2+1$ dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 411-417. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a7/

[1] P. G. Estévez, S. L. Leble, Inverse Problems, 11:4 (1995), 925–937 | DOI | MR | Zbl

[2] P. G. Estévez, J. Prada, J. Nonlinear Math. Phys., 12, Suppl. 1 (2005), 266–279 | DOI | MR

[3] P. G. Estévez, M. L. Gandarias, J. Prada, Phys. Lett. A, 343:1–3 (2005), 40–47 | DOI | MR | Zbl

[4] J. Weiss, J. Math. Phys., 24:6 (1983), 1405–1413 | DOI | MR | Zbl

[5] P. G. Estévez, J. Prada, J. Phys. A, 38:6 (2005), 1287–1297 | DOI | MR | Zbl

[6] S. Abenda, T. Grava, J. Phys. A, 40:35 (2007), 10769–10790 | DOI | MR | Zbl

[7] A. Degasperis, D. D. Kholm, A. N. I. Khon, TMF, 133:2 (2002), 170–183 | DOI | MR

[8] C. Rogers, M. C. Nucci, Phys. Scripta, 33:4 (1986), 289–292 | DOI | MR | Zbl

[9] N. Euler, M. L. Gandarias, M. Euler, O. Lindblom, J. Math. Anal. Appl., 257:1 (2001), 21–28 | DOI | MR | Zbl

[10] P. G. Estévez, J. Prada, J. Nonlinear Math. Phys., 11:2 (2004), 164–179 | DOI | MR | Zbl

[11] V. O. Vakhnenko, J. Phys. A, 25:15 (1992), 4181–4187 | DOI | MR | Zbl

[12] A. Hone, J. P. Wang, Inverse Problems, 19:1 (2003), 129–145 | DOI | MR | Zbl

[13] V. O. Vakhnenko, E. J. Parkes, “The connection of the Degasperis–Procesi equation with the Vakhnenko equation”, Symmetry in Nonlinear Mathematical Physics, Part 1, Proc. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 50, eds. A. G. Nikitin, V. M. Boyko, R. O. Popovych, I. A. Yehorchenko, Natsīonal. Akad. Nauk Ukraïni Īnst. Mat., Kiev, 2004, 493–497 | MR | Zbl

[14] V. O. Vakhnenko, E. J. Parkes, A. J. Morrison, Chaos Solitons Fractals, 17:4 (2003), 683–692 | DOI | MR | Zbl