Riemann-invariant solutions of the~isentropic fluid flow equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 399-410
Voir la notice de l'article provenant de la source Math-Net.Ru
We use a new version of the conditional symmetry method to obtain rank-$k$ solutions expressed in terms of Riemann invariants of the isentropic compressible ideal fluid flow in $3+1$ dimensions. We describe
the procedure for constructing bounded solutions in terms of the elliptic Weierstrass $\wp$-function in detail.
Mots-clés :
Riemann invariant
Keywords: conditional symmetry method, rank-$k$ solution, system of hydrodynamic type.
Keywords: conditional symmetry method, rank-$k$ solution, system of hydrodynamic type.
@article{TMF_2009_159_3_a6,
author = {R. Conte and A. M. Grundland and B. Huard},
title = {Riemann-invariant solutions of the~isentropic fluid flow equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {399--410},
publisher = {mathdoc},
volume = {159},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a6/}
}
TY - JOUR AU - R. Conte AU - A. M. Grundland AU - B. Huard TI - Riemann-invariant solutions of the~isentropic fluid flow equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 399 EP - 410 VL - 159 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a6/ LA - ru ID - TMF_2009_159_3_a6 ER -
R. Conte; A. M. Grundland; B. Huard. Riemann-invariant solutions of the~isentropic fluid flow equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 399-410. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a6/