Riemann-invariant solutions of the isentropic fluid flow equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 399-410 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use a new version of the conditional symmetry method to obtain rank-$k$ solutions expressed in terms of Riemann invariants of the isentropic compressible ideal fluid flow in $3+1$ dimensions. We describe the procedure for constructing bounded solutions in terms of the elliptic Weierstrass $\wp$-function in detail.
Mots-clés : Riemann invariant
Keywords: conditional symmetry method, rank-$k$ solution, system of hydrodynamic type.
@article{TMF_2009_159_3_a6,
     author = {R. Conte and A. M. Grundland and B. Huard},
     title = {Riemann-invariant solutions of the~isentropic fluid flow equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {399--410},
     year = {2009},
     volume = {159},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a6/}
}
TY  - JOUR
AU  - R. Conte
AU  - A. M. Grundland
AU  - B. Huard
TI  - Riemann-invariant solutions of the isentropic fluid flow equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 399
EP  - 410
VL  - 159
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a6/
LA  - ru
ID  - TMF_2009_159_3_a6
ER  - 
%0 Journal Article
%A R. Conte
%A A. M. Grundland
%A B. Huard
%T Riemann-invariant solutions of the isentropic fluid flow equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 399-410
%V 159
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a6/
%G ru
%F TMF_2009_159_3_a6
R. Conte; A. M. Grundland; B. Huard. Riemann-invariant solutions of the isentropic fluid flow equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 399-410. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a6/

[1] A. M. Grundland, B. Huard, J. Phys. A, 40:15 (2007), 4093–4123 | DOI | MR | Zbl

[2] R. Conte, M. Musette, The Painlevé Handbook, Springer, Dordrecht, 2008 | MR | Zbl

[3] E. Goursat, Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes. V. I: Problème de Cauchy. Caractéristiques. Intégrales intermédiaires, Hermann, Paris, 1896 ; V. II: La méthode de Laplace. Les systèmes en involutions. La méthode de M. Darboux. Les équations de la première classe. Transformations des équations du second ordre. Généralisations diverses, Hermann, Paris, 1898 | Zbl | Zbl

[4] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lecture Note Ser., 149, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[5] P. Winternitz, A. M. Grundland, J. A. Tuszyński, J. Math. Phys., 28:9 (1987), 2194–2212 | DOI | MR | Zbl

[6] W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Grundlehren Math. Wiss., 52, Springer, Berlin–New York, 1966 | MR | Zbl

[7] Z. Peradzyński, Arch. Mech., 24 (1972), 287–303 | MR | Zbl