Oscillating solitons of the driven, damped nonlinear Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 536-544 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain time-periodic solitons of the parametrically driven, damped nonlinear Schrödinger equation as solutions of the boundary value problem on a two-dimensional domain. We classify the stability and bifurcations of singly and doubly periodic solutions.
Keywords: nonlinear Schrödinger equation, parametric driving, stability, bifurcation of doubled period.
Mots-clés : Floquet multiplier
@article{TMF_2009_159_3_a18,
     author = {E. V. Zemlyanaya and N. V. Alekseeva},
     title = {Oscillating solitons of the~driven, damped nonlinear {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {536--544},
     year = {2009},
     volume = {159},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a18/}
}
TY  - JOUR
AU  - E. V. Zemlyanaya
AU  - N. V. Alekseeva
TI  - Oscillating solitons of the driven, damped nonlinear Schrödinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 536
EP  - 544
VL  - 159
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a18/
LA  - ru
ID  - TMF_2009_159_3_a18
ER  - 
%0 Journal Article
%A E. V. Zemlyanaya
%A N. V. Alekseeva
%T Oscillating solitons of the driven, damped nonlinear Schrödinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 536-544
%V 159
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a18/
%G ru
%F TMF_2009_159_3_a18
E. V. Zemlyanaya; N. V. Alekseeva. Oscillating solitons of the driven, damped nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 536-544. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a18/

[1] C. Elphick, E. Meron, Phys. Rev. A, 40:6 (1989), 3226–3229 ; J. W. Miles, J. Fluid Mech., 148 (1984), 451–460 ; X.-N. Chen, R.-J. Wei, J. Fluid Mech., 259 (1994), 291–303 ; W. Zhang, J. Viñals, Phys. Rev. Lett., 74:5 (1995), 690–693 ; W. Wang, X. Wang, J. Wang, R. Wei, Phys. Lett. A, 219:1–2 (1996), 74–78 ; X. Wang, R. Wei, Phys. Rev. Lett., 78:14 (1997), 2744–2747 ; Phys. Rev. E, 57:2 (1998), 2405–2410 ; G. Miao, R. Wei, Phys. Rev. E, 59:4 (1999), 4075–4078 ; D. Astruc, S. Fauve, “Parametrically amplified 2-dimensional solitary waves”, IUTAM Symposium on Free Surface Flows, Proc. of the IUTAM Symposium (Birmingam, UK, 10–14 July 2000), Fluid Mech. Appl., 62, eds. A. C. King, Y. D. Shikhmurzaev, Kluwer, Dordrecht, 2001, 39–46 | DOI | DOI | MR | Zbl | DOI | DOI | DOI | MR | DOI | DOI | DOI | Zbl

[2] I. H. Deutsch, I. Abram, J. Opt. Soc. Amer. B, 11:11 (1994), 2303–2313 ; A. Mecozzi, W. L. Kath, P. Kumar, C. G. Goedde, Opt. Lett., 19:24 (1994), 2050–2052 ; S. Longhi, Opt. Lett., 20:7 (1995), 695–697 ; V. J. Sánchez-Morcillo, I. Pérez-Arjona, F. Silva, G. J. de Valcárcel, E. Roldán, Opt. Lett., 25:13 (2000), 957–959 | DOI | DOI | DOI | DOI

[3] I. V. Barashenkov, M. M. Bogdan, V. I. Korobov, Europhys. Lett., 15 (1991), 113–118 | DOI

[4] B. Denardo, B. Galvin, A. Greenfield, A. Larraza, S. Putterman, W. Wright, Phys. Rev. Lett., 68:11 (1992), 1730–1733 ; W.-Z. Chen, Phys. Rev. B, 49:21 (1994), 15063–15066 ; G. Huang, S.-Y. Lou, M. Velarde, Int. J. of Bifur. Chaos Appl. Sci. Eng., 6:10 (1996), 1775–1787 ; N. V. Alexeeva, I. V. Barashenkov, G. P. Tsironis, Phys. Rev. Lett., 84:14 (2000), 3053–3056 ; W. Chen, B. Hu, H. Zhang, Phys. Rev. B, 65:13 (2002), 134302 | DOI | DOI | DOI | Zbl | DOI | DOI

[5] N. V. Alexeeva, I. V. Barashenkov, D. E. Pelinovsky, Nonlinearity, 12:1 (1999), 103–140 | DOI | MR | Zbl

[6] M. Bondila, I. V. Barashenkov, M. M. Bogdan, Physica D, 87:1–4 (1995), 314–320 | DOI | Zbl

[7] I. V. Barashenkov, E. V. Zemlyanaya, Phys. Rev. Lett., 83:13 (1999), 2568–2571 | DOI