Asymptotic expansion of the wobbling kink
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 527-535 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the method of multiple scales to study the wobbling kink of the $\phi^4$ equation. We show that the amplitude of the wobbling decays very slowly, proportionally to $t^{-1/2}$, and the wobbler hence turns out to be an extremely long-lived object.
Keywords: $\phi^4$ equation, wobbling kink, asymptotic expansion, second-harmonic radiation.
@article{TMF_2009_159_3_a17,
     author = {O. F. Oxtoby and I. V. Barashenkov},
     title = {Asymptotic expansion of the~wobbling kink},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {527--535},
     year = {2009},
     volume = {159},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a17/}
}
TY  - JOUR
AU  - O. F. Oxtoby
AU  - I. V. Barashenkov
TI  - Asymptotic expansion of the wobbling kink
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 527
EP  - 535
VL  - 159
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a17/
LA  - ru
ID  - TMF_2009_159_3_a17
ER  - 
%0 Journal Article
%A O. F. Oxtoby
%A I. V. Barashenkov
%T Asymptotic expansion of the wobbling kink
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 527-535
%V 159
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a17/
%G ru
%F TMF_2009_159_3_a17
O. F. Oxtoby; I. V. Barashenkov. Asymptotic expansion of the wobbling kink. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 527-535. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a17/

[1] A. R. Bishop, T. Schneider (eds.), Solitons and Condensed Matter Physics, Proc. Sympos. on Nonlinear (Soliton) Structure and Dynamics in Condensed Matter (Oxford, June 27–29, 1978), Springer Ser. Solid-State Sci., 8, Springer, Berlin, 1978 ; К. Лонгрен, Э. Скотт (ред.), Солитоны в действии, Мир, М., 1981 | DOI | MR | Zbl | MR | MR | Zbl

[2] R. Radzharaman, Solitony i instantony v kvantovoi teorii polya, Mir, M., 1985 ; N. Manton, P. Sutcliffe, Topological Solitons, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl | MR | Zbl

[3] A. Vilenkin, E. P. S. Shellard, Cosmic Strings and Other Topological Defects, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[4] S. Aubry, J. Chem. Phys., 64:8 (1976), 3392–3402 | DOI

[5] A. E. Kudryavtsev, Pisma v ZhETF, 22:3 (1975), 178–181 ; M. J. Ablowitz, M. D. Kruskal, J. F. Ladik, SIAM J. Appl. Math., 36:3 (1979), 428–437 ; T. Sugiyama, Progr. Theoret. Phys., 61:5 (1979), 1550–1563 ; M. Moshir, Nucl. Phys. B, 185:2 (1981), 318–332 ; C. A. Wingate, SIAM J. Appl. Math., 43:1 (1983), 120–140 ; R. Klein, W. Hasenfratz, N. Theodorakopoulos, W. Wunderlich, Ferroelectrics, 26:1 (1980), 721–724; D. K. Campbell, J. F. Schonfeld, C. A. Wingate, Physica D, 9:1–2 (1983), 1–32 ; T. I. Belova, A. E. Kudryavtsev, Physica D, 32:1 (1988), 18–26 ; P. Anninos, S. Oliveira, R. A. Matzner, Phys. Rev. D, 44:1 (1991), 1147–1160 ; Т. И. Белова, ЯФ, 58 (1995), 130–131 ; Т. И. Белова, А. Е. Кудрявцев, УФН, 167:4 (1997), 377–406 | DOI | MR | Zbl | DOI | DOI | DOI | MR | DOI | DOI | MR | DOI | DOI

[6] B. S. Getmanov, Pisma v ZhETF, 24 (1977), 323–327

[7] T. I. Belova, ZhETF, 109 (1996), 1090–1099

[8] M. J. Rice, E. J. Mele, Solid State Comm., 35:6 (1980), 487–491 ; M. J. Rice, Phys Rev. B, 28:6 (1983), 3587–3589 | DOI | DOI

[9] H. Segur, J. Math. Phys., 24:6 (1983), 1439–1443 | DOI | MR

[10] A. L. Sukstanskii, K. I. Primak, Phys. Rev. Lett., 75:17 (1995), 3029–3033 | DOI

[11] O. M. Kiselev, Russian J. Math. Phys., 5:1 (1997), 29–46 ; О. М. Киселев, Сиб. матем. журн., 41:2 (2000), 345–358 | MR | Zbl | DOI | MR | Zbl