Asymptotic expansion of the~wobbling kink
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 527-535
Voir la notice de l'article provenant de la source Math-Net.Ru
We use the method of multiple scales to study the wobbling kink of the $\phi^4$ equation. We show that the amplitude of the wobbling decays very slowly, proportionally to $t^{-1/2}$, and the wobbler hence turns out to be an extremely long-lived object.
Keywords:
$\phi^4$ equation, wobbling kink, asymptotic expansion, second-harmonic radiation.
@article{TMF_2009_159_3_a17,
author = {O. F. Oxtoby and I. V. Barashenkov},
title = {Asymptotic expansion of the~wobbling kink},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {527--535},
publisher = {mathdoc},
volume = {159},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a17/}
}
O. F. Oxtoby; I. V. Barashenkov. Asymptotic expansion of the~wobbling kink. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 527-535. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a17/