Continuous-discrete integrable equations and Darboux transformations as deformations of associative algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 502-514 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define and study deformations of the structure constants for a certain class of associative noncommutative algebras generated by deformation-driving algebras (DDAs). These deformations are governed by the central system (CS). We study such a CS in the case where the DDA is the algebra of shifts. We present concrete examples of deformations for the three-dimensional algebra governed by discrete and mixed continuous-discrete Boussinesq (BSQ) and WDVV equations. We show that the theory of Darboux transformations is completely incorporated into the proposed scheme of deformations, at least in the BSQ case.
Keywords: associative algebra, deformation, integrable system.
@article{TMF_2009_159_3_a15,
     author = {B. G. Konopelchenko},
     title = {Continuous-discrete integrable equations and {Darboux} transformations as deformations of associative algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {502--514},
     year = {2009},
     volume = {159},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a15/}
}
TY  - JOUR
AU  - B. G. Konopelchenko
TI  - Continuous-discrete integrable equations and Darboux transformations as deformations of associative algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 502
EP  - 514
VL  - 159
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a15/
LA  - ru
ID  - TMF_2009_159_3_a15
ER  - 
%0 Journal Article
%A B. G. Konopelchenko
%T Continuous-discrete integrable equations and Darboux transformations as deformations of associative algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 502-514
%V 159
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a15/
%G ru
%F TMF_2009_159_3_a15
B. G. Konopelchenko. Continuous-discrete integrable equations and Darboux transformations as deformations of associative algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 502-514. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a15/

[1] E. Witten, Nucl. Phys. B, 340:2–3 (1990), 281–332 | DOI | MR

[2] R. Dijkgraaf, H. Verlinde, E. Verlinde, Nucl. Phys. B, 352:1 (1991), 59–86 | DOI | MR

[3] B. Dubrovin, Nucl. Phys. B, 379:3 (1992), 627–689 | DOI | MR

[4] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups, Lecture Notes in Math., 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[5] Y. I. Manin, Frobenius Manifolds, Quantum Cohomology and Moduli Spaces, Amer. Math. Soc. Colloq. Publ., 47, AMS, Providence, RI, 1999 | MR | Zbl

[6] C. Hertling, Frobenius Manifolds and Moduli Spaces for Singularities, Cambridge Tracts in Math., 151, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[7] B. G. Konopelchenko, F. Magri, Comm. Math. Phys., 274:3 (2007), 627–658 | DOI | MR | Zbl

[8] B. G. Konopelchenko, F. Magri, TMF, 151:3 (2007), 439–457 | DOI | MR | Zbl

[9] B. G. Konopelchenko, F. Magri, Yano manifolds and coisotropic deformations, to appear

[10] B. G. Konopelchenko, Quantum deformations of associative algebras and integrable systems, arXiv: 0802.3022 | MR

[11] B. G. Konopelchenko, Discrete, q-difference deformations of associative algebras and integrable systems, arXiv: 0809.1938 | MR

[12] V. E. Zakharov, ZhETF, 62 (1972), 1745–1751

[13] A. Givental, Mosc. Math. J., 3:2 (2003), 475–505 | MR | Zbl

[14] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991 | DOI | MR | Zbl