Hirota's virtual multisoliton solutions of $N=2$ supersymmetric Korteweg–de Vries equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 490-501 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that for $a=1$ or $a=4$, the $N=2$ supersymmetric Korteweg–de Vries (super-KdV) equations obtained by Mathieu admit Hirota's $n$-supersoliton solutions, whose nonlinear interaction does not produce any phase shifts. For initial profiles that cannot be distinguished from a one-soliton solution at times $t\ll0$, we reveal the possibility of a spontaneous decay and transformation into a solitonic solution with a different wave number within a finite time. This paradoxical effect is realized by the completely integrable $N=2$ super-KdV systems if the initial soliton is loaded with other solitons that are virtual and become manifest through the $\tau$-function as time increases.
Mots-clés : Hirota's soliton
Keywords: $N=2$ supersymmetric KdV, Krasil'shchik–Kersten system, phase shift, spontaneous decay.
@article{TMF_2009_159_3_a14,
     author = {A. V. Kiselev and V. Hussin},
     title = {Hirota's virtual multisoliton solutions of $N=2$ supersymmetric {Korteweg{\textendash}de} {Vries} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {490--501},
     year = {2009},
     volume = {159},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a14/}
}
TY  - JOUR
AU  - A. V. Kiselev
AU  - V. Hussin
TI  - Hirota's virtual multisoliton solutions of $N=2$ supersymmetric Korteweg–de Vries equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 490
EP  - 501
VL  - 159
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a14/
LA  - ru
ID  - TMF_2009_159_3_a14
ER  - 
%0 Journal Article
%A A. V. Kiselev
%A V. Hussin
%T Hirota's virtual multisoliton solutions of $N=2$ supersymmetric Korteweg–de Vries equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 490-501
%V 159
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a14/
%G ru
%F TMF_2009_159_3_a14
A. V. Kiselev; V. Hussin. Hirota's virtual multisoliton solutions of $N=2$ supersymmetric Korteweg–de Vries equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 490-501. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a14/

[1] C.-A. Laberge, P. Mathieu, Phys. Lett. B, 215:4 (1988), 718–722 | DOI | MR

[2] P. Labelle, P. Mathieu, J. Math. Phys., 32:4 (1991), 923–927 | DOI | MR | Zbl

[3] T. Miwa, M. Jimbo, E. Date, Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras, Cambridge Tracts in Math., 135, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[4] M. Błaszak, J. Phys. A, 22:5 (1989), 451–457 | DOI | MR | Zbl

[5] P. Kersten, J. Krasil'shchik, “Complete integrability of the coupled KdV–mKdV system”, Lie Groups, Geometric Structures and Differential Equations–One Hundred Years After Sophus Lie, Adv. Stud. Pure Math., 37, eds. T. Morimoto, H. Sato, K. Yamaguchi, Math. Soc. Japan, Tokyo, 2002, 151–171 | MR | Zbl

[6] M. A. Ayari, V. Hussin, P. Winternitz, J. Math. Phys., 40:4 (1999), 1951–1965 | DOI | MR | Zbl

[7] A. Karasu, S. Yu. Sakovich, Í. Yurduşen, J. Math. Phys., 44:4 (2003), 1703–1708 | DOI | MR | Zbl

[8] Y. C. Hon, E. G. Fan, Chaos Solitons Fractals, 19:5 (2004), 1141–1146 | DOI | MR | Zbl

[9] W.-P. Hong, Z. Naturforsch., 61a (2006), 125–132 | Zbl

[10] Yu. I. Manin, A. O. Radul, Comm. Math. Phys., 98:1 (1985), 65–77 | DOI | MR | Zbl

[11] S. Ghosh, D. Sarma, Phys. Lett. B, 522:1–2 (2001), 189–193 | DOI | MR | Zbl

[12] T. Inami, H. Kanno, Nucl. Phys. B, 359:1 (1991), 201–217 | DOI | MR | Zbl

[13] A. V. Kiselev, T. Wolf, Comput. Phys. Comm., 177:3 (2007), 315–328 ; arXiv: nlin.SI/0609065 | DOI | MR | Zbl

[14] A. Ibort, L. A. Martínez Alonso, E. Medina Reus, J. Math. Phys., 37:12 (1996), 6157–6172 | DOI | MR | Zbl

[15] A. V. Kiselev, T. Wolf, SIGMA, 2 (2006), Paper 030 | DOI | MR | Zbl