Nonlinear long-wave models for imperfectly bonded layered waveguides
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 475-489 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a composite lattice model for describing nonlinear waves in a two-layer waveguide with adhesive bonding. We first consider waves in an anharmonic chain of oscillating dipoles and show that the corresponding asymptotic long-wave model for longitudinal waves coincides with the Boussinesq-type equation previously derived for a macroscopic waveguide using the nonlinear elasticity approach. We also show that in this model, there is no simple analogy between long longitudinal and long flexural waves. Then, for a composite lattice, we derive two new model systems of coupled Boussinesq-type equations for long nonlinear longitudinal waves and conjecture that a similar description exists in the framework of dynamic nonlinear elasticity.
Keywords: lattice model, long nonlinear wave, solitary wave.
@article{TMF_2009_159_3_a13,
     author = {K. R. Khusnutdinova and A. M. Samsonov and A. S. Zakharov},
     title = {Nonlinear long-wave models for imperfectly bonded layered waveguides},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {475--489},
     year = {2009},
     volume = {159},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a13/}
}
TY  - JOUR
AU  - K. R. Khusnutdinova
AU  - A. M. Samsonov
AU  - A. S. Zakharov
TI  - Nonlinear long-wave models for imperfectly bonded layered waveguides
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 475
EP  - 489
VL  - 159
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a13/
LA  - ru
ID  - TMF_2009_159_3_a13
ER  - 
%0 Journal Article
%A K. R. Khusnutdinova
%A A. M. Samsonov
%A A. S. Zakharov
%T Nonlinear long-wave models for imperfectly bonded layered waveguides
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 475-489
%V 159
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a13/
%G ru
%F TMF_2009_159_3_a13
K. R. Khusnutdinova; A. M. Samsonov; A. S. Zakharov. Nonlinear long-wave models for imperfectly bonded layered waveguides. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 475-489. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a13/

[1] K. R. Khusnutdinova, A. M. Samsonov, Phys. Rev. E, 77:6 (2008), 066603 | DOI | MR

[2] G. V. Dreiden, K. R. Khusnutdinova, A. M. Samsonov, I. V. Semenova, J. Appl. Phys., 104:8 (2008), 086106 | DOI

[3] G. V. Dreiden, K. R. Khusnutdinova, A. M. Samsonov, I. V. Semenova, Strain, 2009 | DOI

[4] K. R. Khusnutdinova, “Volnovaya dinamika sredy, postroennoi na osnove dvukhryadnoi sistemy chastits”, Glubokaya pererabotka uglevodorodnogo syrya, 2, TsNIITEneftekhim, M., 1993, 136–145

[5] A. Askar, Lattice Dynamical Foundations of Continuum Theories, Ser. Theoret. Appl. Mech., 2, World Sci., Singapore, 1985 | MR

[6] G. A. Maugin, Nonlinear Waves in Elastic Crystals, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 1999 | MR | Zbl

[7] E. A. Ilyushina, K postroeniyu teorii uprugosti neodnorodnykh tverdykh tel s mikrostrukturoi, Dis. ...kand. fiz.-matem. nauk, MGU, M., 1976

[8] K. R. Khusnutdinova, Vestn. MGU. Ser. 1. Matem., mekh., 1992, no. 2, 71–76 | MR | Zbl

[9] T. N. Dragunov, I. S. Pavlov, A. I. Potapov, Phys. Solid State, 39:1 (1997), 118–124 | DOI | MR

[10] F. Côté, V. S. Deshpande, N. A. Fleck, A. G. Evans, Internat. J. Solids Structures, 43:20 (2006), 6220–6242 | DOI | Zbl

[11] E. Fermi, J. Pasta, S. Ulam, “Studies on nonlinear problems, I”, Nonlinear Wave Motion, Lecture Appl. Math., 15, ed. A. C. Newell, AMS, Providence, RI, 1955, 143–156 | MR | Zbl

[12] Mathematica, Wolfram Mathematica, , Wolfram Research Inc http://www.wolfram.com | MR

[13] A. M. Samsonov, Dokl. AN SSSR, 277:2 (1984), 332–335 | MR | Zbl

[14] A. M. Samsonov, Strain Solitons in Solids and How to Construct Them, Monogr. Surv. Pure Appl. Math., 117, CRC, Boca Raton, FL, 2001 | DOI | Zbl

[15] A. V. Porubov, Amplification of Nonlinear Strain Waves in Solids, Ser. Stab. Vib. Control Syst. Ser. A, 9, World Scientific, Singapore, 2003 | Zbl

[16] V. E. Zakharov, ZhETF, 65:1 (1973), 219–225

[17] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl

[18] T. B. Benjamin, J. L. Bona, J. J. Mahony, Philos. Trans. R. Soc. Lond. Ser. A, 272:1220 (1972), 47–78 | DOI | MR | Zbl

[19] C. I. Christov, G. A. Maugin, M. G. Velarde, Phys. Rev. E, 54:4 (1996), 3621–3638 | DOI | MR

[20] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, New York, 1944 | MR | Zbl

[21] E. Volterra, E. C. Zachmanoglou, Dynamics of Vibrations, Charles E. Merrill Books, Columbus, 1965

[22] P. A. Martin, “Thin interface layers: adhesives, approximations and analysis”, Elastic Waves and Ultrasonic Nondestructive Evaluation, eds. S. K. Datta, J. D. Achenbach, Y. S Rajapakse, North-Holland, Amsterdam, 1990, 217–222 | MR | Zbl

[23] O. Avila-Pozos, A. B. Movchan, J. Engrg. Math., 45:2 (2003), 155–168 | DOI | MR | Zbl

[24] C. Fochesato, F. Dias, R. Grimshaw, Phys. D, 210:1–2 (2005), 96–117 | DOI | MR | Zbl