Multicomponent nonlinear schr\"odinger equations with constant
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 438-447

Voir la notice de l'article provenant de la source Math-Net.Ru

We outline several specific issues concerning the theory of multicomponent nonlinear Schrödinger equations with constant boundary conditions. We first study the spectral properties of the Lax operator $L$, the structure of the phase space $\mathcal M$, and the construction of the fundamental analytic solutions. We then consider the regularized Wronskian relations, which allow analyzing the map between the potential of $L$ and the scattering data. The Hamiltonian formulation also requires a regularization procedure.
Keywords: multicomponent nonlinear Schrödinger equation, constant boundary condition, fundamental analytic solution.
@article{TMF_2009_159_3_a10,
     author = {V. S. Gerdjikov and N. A. Kostov and T. I. Valchev},
     title = {Multicomponent nonlinear schr\"odinger equations with constant},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {438--447},
     publisher = {mathdoc},
     volume = {159},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a10/}
}
TY  - JOUR
AU  - V. S. Gerdjikov
AU  - N. A. Kostov
AU  - T. I. Valchev
TI  - Multicomponent nonlinear schr\"odinger equations with constant
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 438
EP  - 447
VL  - 159
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a10/
LA  - ru
ID  - TMF_2009_159_3_a10
ER  - 
%0 Journal Article
%A V. S. Gerdjikov
%A N. A. Kostov
%A T. I. Valchev
%T Multicomponent nonlinear schr\"odinger equations with constant
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 438-447
%V 159
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a10/
%G ru
%F TMF_2009_159_3_a10
V. S. Gerdjikov; N. A. Kostov; T. I. Valchev. Multicomponent nonlinear schr\"odinger equations with constant. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 438-447. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a10/