Multicomponent nonlinear schrödinger equations with constant
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 438-447 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We outline several specific issues concerning the theory of multicomponent nonlinear Schrödinger equations with constant boundary conditions. We first study the spectral properties of the Lax operator $L$, the structure of the phase space $\mathcal M$, and the construction of the fundamental analytic solutions. We then consider the regularized Wronskian relations, which allow analyzing the map between the potential of $L$ and the scattering data. The Hamiltonian formulation also requires a regularization procedure.
Keywords: multicomponent nonlinear Schrödinger equation, constant boundary condition, fundamental analytic solution.
@article{TMF_2009_159_3_a10,
     author = {V. S. Gerdjikov and N. A. Kostov and T. I. Valchev},
     title = {Multicomponent nonlinear schr\"odinger equations with constant},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {438--447},
     year = {2009},
     volume = {159},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a10/}
}
TY  - JOUR
AU  - V. S. Gerdjikov
AU  - N. A. Kostov
AU  - T. I. Valchev
TI  - Multicomponent nonlinear schrödinger equations with constant
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 438
EP  - 447
VL  - 159
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a10/
LA  - ru
ID  - TMF_2009_159_3_a10
ER  - 
%0 Journal Article
%A V. S. Gerdjikov
%A N. A. Kostov
%A T. I. Valchev
%T Multicomponent nonlinear schrödinger equations with constant
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 438-447
%V 159
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a10/
%G ru
%F TMF_2009_159_3_a10
V. S. Gerdjikov; N. A. Kostov; T. I. Valchev. Multicomponent nonlinear schrödinger equations with constant. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 438-447. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a10/

[1] V. E. Zakharov, A. B. Shabat, ZhETF, 64 (1973), 1627–1639

[2] V. E. Zakharov, S. V. Manakov, TMF, 19:3 (1974), 332–343 | DOI | MR | Zbl

[3] V. S. Gerdžikov, P. P. Kuliš, Bulgar. J. Phys., 5:4 (1978), 337–349 ; В. С. Герджиков, П. П. Кулиш, ТМФ, 39:1 (1979), 69–74 | MR | DOI | MR

[4] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | MR | Zbl

[5] B. Prinari, M. J. Ablowitz, G. Biondini, J. Math. Phys., 47:6 (2006), 063508 | DOI | MR | Zbl

[6] J. Ieda, T. Miyakawa, M. Wadati, Phys. Rev. Lett., 93:19 (2004), 194102 | DOI

[7] S. V. Manakov, ZhETF, 65 (1973), 505–516

[8] V. S. Gerdzhikov, P. P. Kulish, Zap. nauchn. sem. LOMI, 131 (1983), 34–46 | DOI | MR | Zbl

[9] V. A. Atanasov, V. S. Gerdjikov, “On the multi-component nonlinear Schrödinger equation with constant boundary conditions”, Gravity, Astrophysics and Strings at the Black Sea, eds. P. P. Fiziev, M. D. Todorov, St. Kliment Ohridsky Univ. Press, Sofia, 2006, 22–36 | MR | Zbl

[10] V. S. Gerdjikov, “Selected Aspects of Soliton Theory. Constant boundary conditions”, Prof. G. Manev's Legacy in Contemporary Aspects of Astronomy, Gravitational and Theoretical Physics, eds. V. Gerdjikov, M. Tsvetkov, Heron Press, Sofia, 2005, 277–290 ; “Basic aspects of soliton theory”, Geometry, Integrability and Quantization, eds. I. M. Mladenov, A. C. Hirshfeld, Softex, Sofia, 2005, 78–125 ; arXiv: nlin.SI/0604004 | MR | Zbl

[11] F. Calogero, A. Degasperis, Nuovo Cimento B, 32:2 (1976), 201–242 | DOI | MR

[12] F. Calogero, A. Degasperis, Nuovo Cimento B, 39:1 (1976), 1–54 | DOI | MR

[13] V. V. Konotop, V. E. Vekslerchik, Phys. Rev. E, 49:3 (1994), 2397–2407 | DOI | MR

[14] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl

[15] A. Degasperis, S. Lombardo, J. Phys. A, 40:5 (2007), 961–977 | DOI | MR | Zbl

[16] A. P. Fordy, P. P. Kulish, Comm. Math. Phys., 89:3 (1983), 427–443 ; C. Athorne, A. Fordy, J. Phys. A, 20:6 (1987), 1377–1386 | DOI | MR | Zbl | DOI | MR | Zbl