Existence of energy minimums for thin elastic rods in static helical configurations
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 336-352

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize families of solutions of the static Kirchhoff model of a thin elastic rod physically. These families, which are proved to exist, depend on the behavior of the so-called register and also on the radius and pitch. We describe the energy densities for each of the solutions in terms of the elastic properties and geometric shape of the unstrained rod, which allows determining the selection mechanism for thepreferred helical configurations. This analysis promises to be a fundamental tool for understanding the close connection between the study of elastic deformations in thin rods and coarse-grained models with widespread applications in the natural sciences.
Keywords: thin elastic rod, Kirchhoff equation, inverse problem, integrability
Mots-clés : helix.
@article{TMF_2009_159_3_a1,
     author = {M. Argeri and V. Barone and S. De Lillo and G. Lupo and M. Sommacal},
     title = {Existence of energy minimums for thin elastic rods in static helical configurations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {336--352},
     publisher = {mathdoc},
     volume = {159},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a1/}
}
TY  - JOUR
AU  - M. Argeri
AU  - V. Barone
AU  - S. De Lillo
AU  - G. Lupo
AU  - M. Sommacal
TI  - Existence of energy minimums for thin elastic rods in static helical configurations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 336
EP  - 352
VL  - 159
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a1/
LA  - ru
ID  - TMF_2009_159_3_a1
ER  - 
%0 Journal Article
%A M. Argeri
%A V. Barone
%A S. De Lillo
%A G. Lupo
%A M. Sommacal
%T Existence of energy minimums for thin elastic rods in static helical configurations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 336-352
%V 159
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a1/
%G ru
%F TMF_2009_159_3_a1
M. Argeri; V. Barone; S. De Lillo; G. Lupo; M. Sommacal. Existence of energy minimums for thin elastic rods in static helical configurations. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 336-352. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a1/