Coupled nonlinear Schrödinger equations for interfacial fluids with a free surface
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 326-335
Cet article a éte moissonné depuis la source Math-Net.Ru
For interfacial fluids with a free surface, we derive a new system of coupled nonlinear Schrödinger equations in the small amplitude, quasimonochromatic limit. The derivation uses a recently derived nonlocal formulation of interfacial fluids bounded by a free surface.
Keywords:
interfacial fluid, hydrodynamics, nonlinear wave.
@article{TMF_2009_159_3_a0,
author = {M. J. Ablowitz and T. S. Haut},
title = {Coupled nonlinear {Schr\"odinger} equations for interfacial fluids with a~free surface},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {326--335},
year = {2009},
volume = {159},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a0/}
}
TY - JOUR AU - M. J. Ablowitz AU - T. S. Haut TI - Coupled nonlinear Schrödinger equations for interfacial fluids with a free surface JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 326 EP - 335 VL - 159 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a0/ LA - ru ID - TMF_2009_159_3_a0 ER -
M. J. Ablowitz; T. S. Haut. Coupled nonlinear Schrödinger equations for interfacial fluids with a free surface. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 326-335. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a0/
[1] V. E. Zakharov, PMTF, 9:2 (1968), 86–94 | DOI
[2] R. Grimshaw, Wave Motion, 3:1 (1981), 81–103 | DOI | MR | Zbl
[3] R. H. J. Grimshaw, D. I. Pullin, J. Fluid Mech., 160 (1985), 297–315 | DOI | MR | Zbl
[4] G. J. Roskes, Phys. Fluids, 19:8 (1976), 1253–1254 | DOI | Zbl
[5] T. S. Haut, M. J. Ablowitz, A reformulation and applications of interfacial fluids with a free surface, Preprint, Univ. Colorado, Boulder, 2008 | MR
[6] M. J. Ablowitz, A. S. Fokas, Z. H. Musslimani, J. Fluid Mech., 562 (2006), 313–343 | DOI | MR | Zbl
[7] T. S. Haut, Integral formulations of water waves and multiple fluids: analysis and applications, PhD Thesis, Univ. Colorado, Boulder, 2008 | MR