The infiniteness of the number of eigenvalues in the gap in the essential spectrum for the three-particle Schrödinger operator on a lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 2, pp. 299-317 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a system of three arbitrary quantum particles on a three-dimensional lattice that interact via attractive pair contact potentials. We find a condition for a gap to appear in the essential spectrum and prove that there are infinitely many eigenvalues of the Hamiltonian of the corresponding three-particle system in this gap.
Keywords: three-particle system on a lattice, Schrödinger operator, essential spectrum, discrete spectrum, compact operator.
@article{TMF_2009_159_2_a8,
     author = {M. I. Muminov},
     title = {The~infiniteness of the~number of eigenvalues in the~gap in the~essential spectrum for the~three-particle {Schr\"odinger} operator on a~lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {299--317},
     year = {2009},
     volume = {159},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a8/}
}
TY  - JOUR
AU  - M. I. Muminov
TI  - The infiniteness of the number of eigenvalues in the gap in the essential spectrum for the three-particle Schrödinger operator on a lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 299
EP  - 317
VL  - 159
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a8/
LA  - ru
ID  - TMF_2009_159_2_a8
ER  - 
%0 Journal Article
%A M. I. Muminov
%T The infiniteness of the number of eigenvalues in the gap in the essential spectrum for the three-particle Schrödinger operator on a lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 299-317
%V 159
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a8/
%G ru
%F TMF_2009_159_2_a8
M. I. Muminov. The infiniteness of the number of eigenvalues in the gap in the essential spectrum for the three-particle Schrödinger operator on a lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 2, pp. 299-317. http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a8/

[1] V. N. Efimov, YaF, 12:5 (1970), 1080–1091

[2] R. D. Amado, J. V. Noble, Phys. Rev. D, 5:8 (1971), 1992–2002 | DOI

[3] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR | MR | Zbl

[4] D. P. Yafaev, Matem. sb., 94(136):4(8) (1974), 567–593 | DOI | MR | Zbl

[5] Yu. N. Ovchinnikov, I. M. Sigal, Ann. Phys., 123:2 (1979), 274–295 | DOI | MR

[6] H. Tamura, J. Funct. Anal., 95:2 (1991), 433–459 | DOI | MR | Zbl

[7] S. N. Lakaev, TMF, 89:1 (1991), 94–104 | DOI | MR

[8] S. N. Lakaev, Zh. I. Abdullaev, Matem. zametki, 71:5 (2002), 686–696 | DOI | MR | Zbl

[9] S. N. Lakaev, M. E. Muminov, TMF, 135:3 (2003), 478–503 | DOI | MR | Zbl

[10] S. Albeverio, S. N. Lakaev, Z. I. Muminov, Ann. Henri Poincaré, 5:4 (2004), 743–772 | DOI | MR | Zbl

[11] G. M. Zhislin, Trudy MMO, 9, 1960, 81–120 | MR | Zbl

[12] A. V. Sobolev, Comm. Math. Phys., 156:1 (1993), 101–126 | DOI | MR | Zbl

[13] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl

[14] P. Khalmosh, Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR | MR | Zbl

[15] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Ucheb. posobie, Izd-vo LGU, L., 1980 | MR | MR | Zbl

[16] G. Kopn, T. Kopn, Spravochnik po matematike dlya nauchnykh i inzhenernykh rabotnikov, Nauka, M., 1978 | MR | MR | Zbl