Algebraic integration of sigma-model field equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 2, pp. 266-282
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that the dualization algebra of the sigma model with a symmetric coset space is a Lie algebra and show that it generates an appropriate adjoint representation that allows integrating the field equations locally, which yields first-order equations.
Keywords:
sigma model, first-order formulation, dualization algebra.
@article{TMF_2009_159_2_a6,
author = {N. T. Yilmaz},
title = {Algebraic integration of sigma-model field equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {266--282},
year = {2009},
volume = {159},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a6/}
}
N. T. Yilmaz. Algebraic integration of sigma-model field equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 2, pp. 266-282. http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a6/
[1] E. Cremmer, B. Julia, H. Lü, C. N. Pope, Nucl. Phys. B, 523:1–2 (1998), 73–144 ; arXiv: hep-th/9710119 | DOI | MR | Zbl
[2] E. Cremmer, B. Julia, H. Lü, C. N. Pope, Nucl. Phys. B, 535:1–2 (1998), 242–292 ; arXiv: hep-th/9806106 | DOI | MR | Zbl
[3] N. T. Y{\i}lmaz, Nucl. Phys. B, 664:1–2 (2003), 357–370 ; arXiv: hep-th/0301236 | DOI | MR | Zbl
[4] N. T. Y{\i}lmaz, Nucl. Phys. B, 675:1–2 (2003), 122–138 ; arXiv: hep-th/0407006 | DOI | MR | Zbl
[5] A. Keurentjes, Nucl. Phys. B, 658:3 (2003), 303–347 ; arXiv: hep-th/0210178 | DOI | MR | Zbl
[6] A. Keurentjes, Nucl. Phys. B, 658:3 (2003), 348–372 ; arXiv: hep-th/0212024 | DOI | MR | Zbl | MR