@article{TMF_2009_159_2_a5,
author = {D. V. Talalaev},
title = {Bethe ansatz and isomondromy deformations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {252--265},
year = {2009},
volume = {159},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a5/}
}
D. V. Talalaev. Bethe ansatz and isomondromy deformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 2, pp. 252-265. http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a5/
[1] D. V. Talalaev, Funkts. analiz i ego pril., 40:1 (2006), 86–91 ; Quantization of the Gaudin system, arXiv: hep-th/0404153 | DOI | MR | Zbl
[2] A. Chervov, D. Talalaev, Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence, arXiv: hep-th/0604128
[3] E. Mukhin, V. Tarasov, A. Varchenko, The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz, arXiv: math.AG/0512299 | MR
[4] A. A. Bolibrukh, Fuksovy differentsialnye uravneniya i golomorfnye rassloeniya, MTsNMO, M., 2000 | MR
[5] U. Muğan, A. Sakka, J. Math. Phys., 36:3 (1995), 1284–1298 | DOI | MR | Zbl
[6] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, From Gauss to Painlevé. A Modern Theory of Special Functions, Aspects Math., E16, Vieweg, Brauncschweig, 1991 | DOI | MR | Zbl
[7] E. Frenkel, Bull. Amer. Math. Soc. (N.S.), 41:2 (2004), 151–184 ; arXiv: math.AG/0303074 | DOI | MR | Zbl
[8] A. Gerasimov, D. Lebedev, S. Oblezin, Comm. Math. Phys., 284:3 (2008), 867–896 ; ; On Baxter $Q$-operators and their arithmetic implications, arXiv: 0706.3476arXiv: 0711.2812 | DOI | MR | Zbl