Non-Abelian gauge theories, prepotentials, and Abelian differentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 2, pp. 220-242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss particular solutions of integrable systems (starting from the well-known dispersionless KdV and Toda hierarchies) that most directly define the generating functions for the Gromov–Witten classes in terms of a rational complex curve. From the mirror theory standpoint, these generating functions can be identified with the simplest prepotentials of complex manifolds, and we present some new exactly calculable examples of such prepotentials. For higher-genus curves, which in this context correspond to non-Abelian gauge theories via the topological string/gauge duality, we construct similar solutions using an extended basis of Abelian differentials, generally with extra singularities at the branch points of the curve.
Keywords: supersymmetric gauge theory, topological string, integrable system.
@article{TMF_2009_159_2_a3,
     author = {A. V. Marshakov},
     title = {Non-Abelian gauge theories, prepotentials, and {Abelian} differentials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {220--242},
     year = {2009},
     volume = {159},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a3/}
}
TY  - JOUR
AU  - A. V. Marshakov
TI  - Non-Abelian gauge theories, prepotentials, and Abelian differentials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 220
EP  - 242
VL  - 159
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a3/
LA  - ru
ID  - TMF_2009_159_2_a3
ER  - 
%0 Journal Article
%A A. V. Marshakov
%T Non-Abelian gauge theories, prepotentials, and Abelian differentials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 220-242
%V 159
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a3/
%G ru
%F TMF_2009_159_2_a3
A. V. Marshakov. Non-Abelian gauge theories, prepotentials, and Abelian differentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 2, pp. 220-242. http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a3/

[1] E. Witten, Nucl. Phys. B, 340:2–3 (1990), 281–332 | DOI | MR

[2] V. Kac, A. Schwarz, Phys. Lett. B, 257:3–4 (1991), 329–334 | DOI | MR

[3] M. L. Kontsevich, Funkts. analiz i ego pril., 25:2 (1991), 50–57 ; Comm. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl | DOI | MR | Zbl

[4] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, A. Zabrodin, Phys. Lett. B, 275:3–4 (1992), 311–314 ; ; Nucl. Phys. B, 380:1–2 (1992), 181–240 ; arXiv: hep-th/9111037arXiv: hep-th/9201013 | DOI | MR | DOI | MR

[5] M. Fukuma, H. Kawai, R. Nakayama, Internat. J. Modern Phys. A, 6:8 (1991), 1385–1406 | DOI | MR

[6] M. Toda, Teoriya nelineinykh reshetok, Mir, M., 1984 | MR | MR | Zbl

[7] A. S. Losev, A. B. Marshakov, N. A. Nekrasov, “Small instantons, little strings and free fermions”, From Fields to Strings: Circumnavigating Theoretical Physics, Ian Kogan Memorial Collection, V. 1, eds. M. Shifman, A. Vainshtein, J. Wheater, World Scientific, Singapore, 2005, 581–621 ; arXiv: hep-th/0302191 | DOI | MR | Zbl

[8] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 355:3–4 (1995), 466–474 ; arXiv: hep-th/9505035 | DOI | MR | Zbl

[9] A. V. Marshakov, N. A. Nekrasov, JHEP, 2007, no. 1, 104 ; ; А. В. Маршаков, ТМФ, 154:3 (2008), 424–450 ; arXiv: hep-th/0612019arXiv: 0706.2857 | DOI | MR | DOI | MR | Zbl

[10] I. M. Krichever, Comm. Pure Appl. Math., 47:4 (1994), 437–475 ; arXiv: hep-th/9205110 | DOI | MR | Zbl

[11] N. A. Nekrasov, Adv. Theor. Math. Phys., 7:5 (2003), 831–864 ; arXiv: hep-th/0206161 | DOI | MR | Zbl

[12] A. Okounkov, Math. Res. Lett., 7:4 (2000), 447–453 ; arXiv: math.AG/0004128 | DOI | MR | Zbl

[13] N. A. Nekrasov, A. Okounkov, “Seiberg–Witten theory and random partitions”, The Unity of Mathematics, Progr. Math., 244, eds. P. Etingof, V. Retakh, I. M. Singer, Birkhäuser, Boston, MA, 2006, 525–596 ; arXiv: hep-th/0306238 | DOI | MR | Zbl

[14] T. Eguchi, K. Hori, S. K. Yang, Internat. J. Modern Phys. A, 10:29 (1995), 4203–4224 ; arXiv: hep-th/9503017 | DOI | MR | Zbl

[15] E. Getzler, Publ. Res. Inst. Math. Sci., 40:2 (2004), 507–536 ; ; arXiv: math.AG/0207025arXiv: math.AG/0209110 | DOI | MR | Zbl

[16] A. Givental, Mosc. Math. J., 1:4 (2001), 551–568 ; arXiv: math.AG/0108100 | MR | Zbl

[17] A. Okounkov, R. Pandharipande, Ann. of Math. (2), 163:2 (2006), 517–560 ; ; The equivariant Gromov–Witten theory of $P^1$, arXiv: math.AG/0204305arXiv: math.AG/0207233 | DOI | MR | Zbl | MR

[18] G. Carlet, B. Dubrovin, Y. Zhang, Mosc. Math. J., 4:2 (2004), 313–332 ; ; B. Dubrovin, Y. Zhang, Comm. Math. Phys., 250:1 (2004), 161–193 ; arXiv: nlin.SI/0306060arXiv: math.DG/0308152 | MR | Zbl | DOI | MR | Zbl

[19] A. Marshakov, JHEP, 3 (2008), 055 ; arXiv: 0712.2802 | DOI | MR

[20] K. Saito, On the periods of primitive integrals, Preprint, Harvard Univ., Cambridge, MA, 1980; А. С. Лосев, ТМФ, 95:2 (1993), 307–316 ; ; T. Eguchi, H. Kanno, Y. Yamada, S.-K. Yang, Phys. Lett. B, 305:3 (1993), 235–241 ; arXiv: hep-th/9211090arXiv: hep-th/9302048 | DOI | MR | Zbl | DOI | MR

[21] T. Eguchi, S.-K. Yang, Modern Phys. Lett. A, 9:31 (1994), 2893–2902 ; arXiv: hep-th/9407134 | DOI | MR | Zbl

[22] A. Marshakov, Non Abelian gauge theories, prepotentials and Abelian differentials, arXiv: 0810.1536 | MR

[23] H. W. Braden, A. Marshakov, A. Mironov, A. Morozov, Acta Appl. Math., 99:3 (2007), 223–244 ; arXiv: hep-th/0606035 | DOI | MR | Zbl

[24] M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, S. Katz, Nucl. Phys. B, 405:2–3 (1993), 279–304 ; ; M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, Comm. Math. Phys., 165:2 (1994), 311–427 ; arXiv: hep-th/9302103arXiv: hep-th/9309140 | DOI | MR | Zbl | DOI | MR | Zbl

[25] A. Klemm, M. Mariño, S. Theisen, JHEP, 3 (2003), 051 ; ; R. Dijkgraaf, A. Sinkovics, M. Temürhan, Adv. Theor. Math. Phys., 7:6 (2003), 1155–1174 ; ; M. Aganagic, V. Bouchard, A. Klemm, Comm. Math. Phys., 277:3 (2008), 771–819 ; arXiv: hep-th/0211216arXiv: hep-th/0211241arXiv: hep-th/0607100 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl