Spectral parameterization for power sums of a quantum supermatrix
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 2, pp. 207-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain a parameterization for power sums of a $GL(m|n)$-type quantum (super)matrix in terms of its spectral values.
Keywords: quantum (super)matrix, characteristic subalgebra, spectral value.
@article{TMF_2009_159_2_a2,
     author = {D. I. Gurevich and P. N. Pyatov and P. A. Saponov},
     title = {Spectral parameterization for power sums of a~quantum supermatrix},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {207--219},
     year = {2009},
     volume = {159},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a2/}
}
TY  - JOUR
AU  - D. I. Gurevich
AU  - P. N. Pyatov
AU  - P. A. Saponov
TI  - Spectral parameterization for power sums of a quantum supermatrix
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 207
EP  - 219
VL  - 159
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a2/
LA  - ru
ID  - TMF_2009_159_2_a2
ER  - 
%0 Journal Article
%A D. I. Gurevich
%A P. N. Pyatov
%A P. A. Saponov
%T Spectral parameterization for power sums of a quantum supermatrix
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 207-219
%V 159
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a2/
%G ru
%F TMF_2009_159_2_a2
D. I. Gurevich; P. N. Pyatov; P. A. Saponov. Spectral parameterization for power sums of a quantum supermatrix. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 2, pp. 207-219. http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a2/

[1] D. I. Gurevich, P. N. Pyatov, P. A. Saponov, Algebra i analiz, 17:1 (2005), 160–182 ; arXiv: math.QA/0412192 | MR | Zbl

[2] D. I. Gurevich, P. N. Pyatov, P. A. Saponov, TMF, 147:1 (2006), 14–46 ; arXiv: math.QA/0508506 | DOI | MR | Zbl

[3] D. I. Gurevich, P. N. Pyatov, P. A. Saponov, Algebra i analiz, 20:2 (2008), 70–133 ; arXiv: math.QA/0612815 | MR

[4] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Math. Monogr., Clarendon Press, Oxford Univ. Press, Oxford–New York, 1995 | MR | Zbl

[5] A. P. Isaev, O. V. Ogievetsky, P. N. Pyatov, J. Phys. A, 32:9 (1999), L115–L121 ; arXiv: math.QA/9809170 | DOI | MR | Zbl

[6] A. Ram, Proc. London Math. Soc., 75:1 (1997), 99–133 ; arXiv: math.RT/9511223 | DOI | MR | Zbl

[7] O. Ogievetsky, P. Pyatov, “Lecture on Hecke algebras”, Symmetries and Integrable Systems, Proc. Int. School (Dubna, Russia, June 8–11, 1999), ed. S. Z. Pakulyak, JINR, Dubna, 2000, 39–88; Preprint MPIM 2001-40, http://www.mpim-bonn.mpg.de/ html/preprints/preprints.html

[8] P. H. Hai, Acta Math. Vietnam., 24:2 (1999), 235–246 | MR | Zbl

[9] A. Isaev, O. Ogievetsky, P. Pyatov, Czech. J. Phys., 48:11 (1998), 1369–1374 ; arXiv: math.QA/9809047 | DOI | MR | Zbl

[10] A. Isaev, P. Pyatov, Spectral extension of the quantum group contagent bundle, arXiv: 0812.2225

[11] T. Umeda, Proc. Amer. Math. Soc., 126:11 (1998), 3169–3175 | DOI | MR | Zbl

[12] O. V. Ogievetsky, P. N. Pyatov, Orthogonal and symplectic quantum matrix algebras and Cayley–Hamilton theorem for them, arXiv: math.QA/0511618

[13] D. Gurevich, P. Saponov, “Geometry of non-commutative orbits related to Hecke symmetries”, Quantum Groups, Proc. Conf. in Memory of J. Donin (Haifa, Israel, July 5–12, 2004), Contemp. Math., 433, eds. P. Etingof, S. Gelaki, S. Shnider, Amer. Math. Soc., Providence, RI, 2007, 209–250 ; arXiv: math/0411579 | DOI | MR | Zbl