Correlation functions of the XX Heisenberg magnet and random walks of vicious walkers
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 2, pp. 179-193 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate a relation between random walks on a one-dimensional periodic lattice and correlation functions of the XX Heisenberg spin chain. Operator averages over the ferromagnetic state play the role of generating functions of the number of paths traveled by so-called vicious random walkers (vicious walkers annihilate each other if they arrive at the same lattice site). We show that the two-point correlation function of spins calculated over eigenstates of the XX magnet can be interpreted as the generating function of paths traveled by a single walker in a medium characterized by a variable number of vicious neighbors. We obtain answers for the number of paths traveled by the described walker from a fixed lattice site to a sufficiently remote site. We provide asymptotic estimates of the number of paths in the limit of a large number of steps.
Keywords: random walk, Heisenberg magnet, correlation function.
@article{TMF_2009_159_2_a0,
     author = {N. M. Bogolyubov and K. L. Malyshev},
     title = {Correlation functions of {the~XX} {Heisenberg} magnet and random walks of vicious walkers},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--193},
     year = {2009},
     volume = {159},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a0/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
AU  - K. L. Malyshev
TI  - Correlation functions of the XX Heisenberg magnet and random walks of vicious walkers
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 179
EP  - 193
VL  - 159
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a0/
LA  - ru
ID  - TMF_2009_159_2_a0
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%A K. L. Malyshev
%T Correlation functions of the XX Heisenberg magnet and random walks of vicious walkers
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 179-193
%V 159
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a0/
%G ru
%F TMF_2009_159_2_a0
N. M. Bogolyubov; K. L. Malyshev. Correlation functions of the XX Heisenberg magnet and random walks of vicious walkers. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 2, pp. 179-193. http://geodesic.mathdoc.fr/item/TMF_2009_159_2_a0/

[1] M. E. Fisher, J. Statist. Phys., 34:5–6 (1984), 667–729 | DOI | MR | Zbl

[2] P. J. Forrester, J. Phys. A, 23:7 (1990), 1259–1273 | DOI | MR | Zbl

[3] T. Nagao, P. J. Forrester, Nucl. Phys. B, 620:3 (2002), 551–565 | DOI | MR | Zbl

[4] A. J. Guttmann, A. L. Owczarek, X. G. Viennot, J. Phys. A, 31:40 (1998), 8123–8135 | DOI | MR | Zbl

[5] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, J. Phys. A, 33:48 (2000), 8835–8866 | DOI | MR | Zbl

[6] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, J. Statist. Phys., 110:3–6 (2003), 1069–1086 | DOI | MR | Zbl

[7] M. Katori, H. Tanemura, Phys. Rev. E, 66:1 (2002), 011105 | DOI

[8] M. Katori, H. Tanemura, T. Nagao, N. Komatsuda, Phys. Rev. E, 68:2 (2003), 021112 | DOI

[9] M. Katori, H. Tanemura, “Nonintersecting paths, noncolliding diffusion processes and representation theory”, Combinatorial Methods in Representation Theory and their Applications, RIMS Kôkyûroku, 1438, ed. D. Sagaki, Res. Inst. Math. Sci., Kyoto, 2005, 83–102

[10] P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. A, 38:1 (1988), 364–374 | DOI | MR | Zbl

[11] D. Huse, M. Fisher, Phys. Rev. B, 29:1 (1984), 239–270 | DOI | MR

[12] J. W. Essam, A. J. Guttmann, Phys. Rev. E, 52:6 (1995), 5849–5862 | DOI | MR

[13] S. Yu. Grigorev, V. B. Priezzhev, TMF, 146:3 (2006), 488–498 | DOI | MR

[14] J. W. van de Leur, A. Yu. Orlov, Random turn walk on a half line with creation of particles at the origin, arXiv: 0801.0066 | MR

[15] N. M. Bogolyubov, Zap. nauchn. sem. POMI, 325, 2005, 13–27 | DOI | MR | Zbl

[16] N. M. Bogolyubov, Zap. nauchn. sem. POMI, 335, 2006, 59–74 | DOI | MR | Zbl

[17] C. Malyshev, “Functional integration with “automorphic” boundary conditions and correlators of $z$-components of spins in the $XY$ and $XX$ Heisenberg chains”, New Developments in Mathematical Physics Research, ed. C. V. Benton, Nova Sci., New York, 2004, 85–116 | MR | Zbl

[18] K. L. Malyshev, Zap. nauchn. sem. POMI, 317, 2004, 142–173 | DOI | MR | Zbl

[19] E. Lieb, T. Schultz, D. Mattis, Ann. Physics, 16:3 (1961), 407–466 | DOI | MR | Zbl

[20] Th. Niemeijer, Physica, 36:3 (1967), 377–419 ; 39:3 (1968), 313–326 | DOI | DOI

[21] F. Kolomo, A. G. Izergin, V. E. Korepin, V. Tognetti, TMF, 94:1 (1993), 19–51 | DOI | MR

[22] A. G. Izergin, V. S. Kapitonov, N. A. Kitanin, Zap. nauchn. sem. POMI, 245, 1997, 173–206 | DOI | MR | Zbl

[23] V. S. Kapitonov, A. G. Pronko, Zap. nauchn. sem. POMI, 269, 2000, 219–261 | DOI | MR | Zbl

[24] E. Precsli, G. Sigal, Gruppy petel, Mir, M., 1990 | MR | MR | Zbl

[25] M. Katori, H. Tanemura, Scaling limit of vicious walkers, Schur function, and Gaussian random matrix ensemble, arXiv: cond-mat/0110274

[26] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1993 | MR | MR | Zbl

[27] W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Grundlehren Math. Wiss., 52, Springer, New York, 1966 | MR | Zbl