@article{TMF_2009_159_1_a8,
author = {M. Sebawe Abdalla and P. G. L. Leach},
title = {Lie algebraic treatment of the~quadratic invariants for a~quantum system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {142--161},
year = {2009},
volume = {159},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a8/}
}
TY - JOUR AU - M. Sebawe Abdalla AU - P. G. L. Leach TI - Lie algebraic treatment of the quadratic invariants for a quantum system JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 142 EP - 161 VL - 159 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a8/ LA - ru ID - TMF_2009_159_1_a8 ER -
M. Sebawe Abdalla; P. G. L. Leach. Lie algebraic treatment of the quadratic invariants for a quantum system. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 1, pp. 142-161. http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a8/
[1] M. Hillery, D. Yu., J. Bergou, Phys. Rev. A, 49:2 (1994), 1288–1295 | DOI
[2] N. Ph. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, Phys. Rev. Lett., 75:19 (1995), 3426–3429 | DOI
[3] C. C. Gerry, J. Opt. Soc. Amer. B, 8:3 (1991), 685–690 | DOI
[4] C. C. Gerry, Phys. Rev. A, 35:5 (1987), 2146–2149 ; C. C. Gerry, E. E. Hach, Phys. Lett. A, 174:3 (1993), 185–189 | DOI | DOI
[5] I. Jex, V. Buz̆ek, J. Modern Opt., 40:5 (1993), 771–783 | DOI | MR | Zbl
[6] M. Zahler, Y. Ben Aryeh, Phys. Rev. A, 43:11 (1991), 6368–6378 | DOI
[7] M. S. Abdalla, A. A. El-Orany Faisal, J. Perina, Nuovo Cimento B, 116:2 (2001), 137–154
[8] V. Bužek, G. Drobný, Phys. Rev. A, 65:5 (2002), 053410 | DOI
[9] A. A. El-Orany Faisel, S. S. Hassan, M. S. Abdalla, J. Optics B, 5 (2003), 396–404 | DOI
[10] C. W. Gardiner, C. M. Savage, Optics Comm., 50:3 (1984), 173–178 | DOI
[11] A. Karpati, P. Adam, J. Janszky, M. Bertolotti, C. Sibilia, J. Optics B, 2:2 (2000), 133–139 | DOI | MR
[12] X.-G. Wang, S.-H. Pan, G.-Z. Yang, European J. Phys., 10:3 (2000), 415–422 | DOI
[13] M. S. Abdalla, M. A. Bashir, J. Egyptian Math. Soc., 5:2 (1997), 171–182 | MR | Zbl
[14] H.-Y. Fan, H. R. Zaidi, J. R. Klauder, Phys. Rev. D, 35:6 (1987), 1831–1834 | DOI | MR
[15] H.-Y. Fan, J. VanderLinde, Phys. Rev. A, 39:6 (1989), 2987–2993 | DOI | MR
[16] C. F. Lo, Phys. Rev. A, 42:11 (1990), 6752–6755 | DOI
[17] M. Xin, W. Rhodes, Phys. Rev. A, 41:9 (1990), 4625–4631 | DOI
[18] M. S. Abdalla, M. A. Bashir, Quantum Semiclass. Opt., 10:2 (1998), 415–423 | DOI | MR
[19] M. A. Al-Gwaiz, M. S. Abdalla, S. Deshmukh, J. Phys. A, 27:4 (1994), 1275–1282 | DOI | MR | Zbl
[20] M. S. Abdalla, Nuovo Cimento B, 112:11 (1997), 1549–1554 | MR
[21] M. A. Bashir, M. S. Abdalla, Phys. Lett. A, 204:1 (1995), 21–25 | DOI | MR | Zbl
[22] E. Y. C. Lu, Phys. Rev. A, 8:2 (1973), 1053–1061 ; Nuovo Cimento Lett., 3:14 (1972), 585–589 | DOI | DOI
[23] M. S. Abdalla, S. S. Hassan, A.-S. F. Obada, Phys. Rev. A, 34:6 (1986), 4869–4874 ; M. S. Abdalla, M. M. Nassar, Ann. Phys., 324:3 (2009), 637–669 | DOI | DOI | Zbl
[24] H. R. Lewis, W. B. Riesenfeld, J. Math. Phys., 10:8 (1969), 1458–1473 | DOI | MR | Zbl
[25] H. R. Lewis Jr., Phys. Rev. Lett., 18:13 (1967), 510–512 ; J. Math. Phys., 9:11 (1968), 1976–1986 | DOI | DOI | Zbl
[26] V. P. Ermakov, Univer. izv. Kiev, 9 (1880), 1–25 | DOI | MR
[27] I. A. Malkin, V. I. Man'ko, D. A. Trifonov, Phys. Rev. D, 2:8 (1970), 1371–1385 | DOI
[28] I. A. Malkin, V. I. Man'ko, D. A. Trifonov, J. Math. Phys., 14:5 (1973), 576–582 | DOI
[29] V. V. Dodonov, V. I. Man'ko, Phys. Rev. A, 20:2 (1979), 550–560 | DOI
[30] M. S. Abdalla, P. G. L. Leach, J. Phys. A, 36:49 (2003), 12205–12221 | DOI | MR | Zbl
[31] M. S. Abdalla, P. G. L. Leach, J. Phys. A, 38:4 (2005), 881–893 | DOI | MR | Zbl
[32] S. Steinberg, J. Differential Equations, 26:3 (1977), 404–434 | DOI | MR | Zbl
[33] G. Dattoli, M. Richetta, G. Schettini, A. Torre, J. Math. Phys., 31:12 (1990), 2856–2863 | DOI | MR | Zbl
[34] G. Dattoli, J. C. Gallado, A. Torre, Riv. Nuovo Cimento, 11:11 (1988), 1–79 | DOI | MR
[35] A. O. Barut, L. Girardello, Comm. Math. Phys., 21:1 (1971), 41–55 | DOI | MR | Zbl
[36] A. O. Barut, “Unified algebraic construction of representations of compact and non-compact Lie algebras and Lie groups”, Mathematical Methods of Theoretical Physics, Proc. IX Boulder Summer Institute for Theoretical Physics (Univ. Colorado, Boulder, Colo., 1966), Lectures in Theoret. Phys., IXA, eds. W. E. Brittin, A. O. Barut, M. Guenin, Gordon and Breach, New York, 1967, 125–171 | MR
[37] V. de Alfaro, S. Fubini, G. Furlan, Nuovo Cimento A, 34:4 (1984), 569–612 | DOI
[38] K. Andriopoulos, P. G. L. Leach, J. Phys. A, 38:20 (2005), 4365–4374 | DOI | MR | Zbl
[39] K. Andriopoulos, P. G. L. Leach, J. Nonlinear Math. Phys., 12 Suppl. 1 (2005), 32–42 | DOI | MR
[40] P. G. L. Leach, K. Andriopoulos, Phys. Scripta, 77:1 (2008), 015002 | DOI | MR | Zbl
[41] R. L. Lemmer, P. G. L. Leach, Arab. J. Math. Sci., 5:2 (1999), 1–17 | MR | Zbl
[42] M. Znojil, P. G. L. Leach, J. Math. Phys., 33:8 (1992), 2785–2794 | DOI | MR | Zbl
[43] P. G. L. Leach, J. Math. Phys., 18:8 (1977), 1608–1611 | DOI | Zbl
[44] J.-R. Burgan, Sur les groupes de transformation en physique mathématique. Application aux fluides de l'éspace des phases et à la mécanique quantique, Thèse, Univ. d'Orléans, Orléans, 1978
[45] J.-R. Burgan, M. R. Feix, E. Fijalkow, J. Gutierrez, A. Munier, “Utilisation des groupes de transformation pour la résolution des équations aux dérivées partielles”, Applied Inverse Problems, Lecture Notes in Phys., 85, ed. P. C. Sabatier, Springer, Berlin, 1978, 248–273 | DOI | MR | Zbl
[46] E. Pinney, Proc. Amer. Math. Soc., 1:5 (1950), 681 | DOI | MR | Zbl