Vacuum solutions in the Neveu–Schwarz field theory of a fermionic string and the zero-curvature representation in graded spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 1, pp. 131-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We demonstrate that vacuum solutions in the Neveu–Schwarz field theory of a fermionic string incorporating the GSO$(-)$ sector are naturally related to the zero-curvature representation in a graded space of special form. We use the same representation to describe the equivalence of the cubic and nonpolynomial theories with the GSO$(-)$ sector also taken into account.
Keywords: string field theory, zero-curvature representation, pure gauge solution.
@article{TMF_2009_159_1_a7,
     author = {I. Ya. Aref'eva and R. V. Gorbachev and P. B. Medvedev},
     title = {Vacuum solutions in {the~Neveu{\textendash}Schwarz} field theory of a~fermionic string and the~zero-curvature representation in graded spaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {131--141},
     year = {2009},
     volume = {159},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a7/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
AU  - R. V. Gorbachev
AU  - P. B. Medvedev
TI  - Vacuum solutions in the Neveu–Schwarz field theory of a fermionic string and the zero-curvature representation in graded spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 131
EP  - 141
VL  - 159
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a7/
LA  - ru
ID  - TMF_2009_159_1_a7
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%A R. V. Gorbachev
%A P. B. Medvedev
%T Vacuum solutions in the Neveu–Schwarz field theory of a fermionic string and the zero-curvature representation in graded spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 131-141
%V 159
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a7/
%G ru
%F TMF_2009_159_1_a7
I. Ya. Aref'eva; R. V. Gorbachev; P. B. Medvedev. Vacuum solutions in the Neveu–Schwarz field theory of a fermionic string and the zero-curvature representation in graded spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 1, pp. 131-141. http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a7/

[1] E. Witten, Nucl. Phys. B, 276:2 (1986), 291–324 | DOI | MR

[2] I. Ya. Aref'eva, P. B. Medvedev, A. P. Zubarev, Nucl. Phys. B, 341:2 (1990), 464–498 | DOI | MR | Zbl

[3] C. R. Preitschopf, C. B. Thorn, S. A. Yost, Nucl. Phys. B, 337:2 (1990), 363–433 | DOI | MR

[4] I. Ya. Aref'eva, D. M. Belov, A. A. Giryavets, A. S. Koshelev, P. B. Medvedev, “Noncommutative field theories and (super)string field theories”, Particles and Fields (São Paulo, Brazil 14–27 January 2001), eds. G. A. Alves, O. J. P. Eboli, V. O. Rivelles, World Sci., River Edge, NJ, 2002, 1–163 ; arXiv: hep-th/0111208 | DOI | MR | Zbl

[5] M. Schnabl, Adv. Theor. Math. Phys., 10:4 (2006), 433–501 ; arXiv: hep-th/0511286 | DOI | MR | Zbl

[6] Y. Okawa, JHEP, 04 (2006), 055 ; arXiv: hep-th/0603159 | DOI | MR

[7] E. Fuchs, M. Kroyter, JHEP, 05 (2006), 006 ; ; T. Erler, JHEP, 05 (2007), 083 ; 084 ; ; ; T. Takahashi, JHEP, 01 (2008), 001 ; arXiv: hep-th/0603195arXiv: hep-th/0611200arXiv: hep-th/0612050arXiv: hep-th/0710.5358 | DOI | MR | DOI | MR | DOI | MR | DOI | MR

[8] I. Ya. Aref'eva, D. M. Belov, A. S. Koshelev, P. B. Medvedev, Nucl. Phys. B, 638:1–2 (2002), 21–40 ; arXiv: hep-th/0107197 | DOI | MR | Zbl

[9] I. Ya. Aref'eva, R. V. Gorbachev, P. B. Medvedev, Tachyon Solution in Cubic Neveu–Schwarz String Field Theory, arXiv: 0804.2017 | MR

[10] I. Ya. Aref'eva, D. M. Belov, A. A. Giryavets, JHEP, 09 (2002), 050 ; arXiv: hep-th/0201197 | DOI | MR

[11] N. Berkovits, A. Sen, B. Zwiebach, Nucl. Phys. B, 587:1–3 (2000), 147–178 ; arXiv: hep-th/0002211 | DOI | MR | Zbl

[12] N. Berkovits, Nucl. Phys. B, 450:1–2 (1995), 90–102 ; Erratum, 459:1–2 \year 1996, 439–451 ; arXiv: hep-th/9503099 | DOI | MR | Zbl | MR

[13] E. Fuchs, M. Kroyter, JHEP, 10 (2008), 054 ; arXiv: hep-th/0805.4386 | DOI | Zbl

[14] D. Friedan, E. Martinec, S. Shenker, Nucl. Phys. B, 271:1 (1986), 93–165 | DOI | MR