Aspects of proper differential sequences of ordinary differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 1, pp. 64-80
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define a proper differential sequence of ordinary differential equations and introduce a method for deriving an alternate sequence of integrals for such a sequence. We describe some general properties, illustrated by several examples.
Keywords: sequence of ordinary differential equations, recursion operator, symmetry analysis of ordinary differential equations, integrable ordinary differential equation.
@article{TMF_2009_159_1_a3,
     author = {N. Euler and P. G. L. Leach},
     title = {Aspects of proper differential sequences of ordinary differential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {64--80},
     year = {2009},
     volume = {159},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a3/}
}
TY  - JOUR
AU  - N. Euler
AU  - P. G. L. Leach
TI  - Aspects of proper differential sequences of ordinary differential equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 64
EP  - 80
VL  - 159
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a3/
LA  - ru
ID  - TMF_2009_159_1_a3
ER  - 
%0 Journal Article
%A N. Euler
%A P. G. L. Leach
%T Aspects of proper differential sequences of ordinary differential equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 64-80
%V 159
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a3/
%G ru
%F TMF_2009_159_1_a3
N. Euler; P. G. L. Leach. Aspects of proper differential sequences of ordinary differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 1, pp. 64-80. http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a3/

[1] M. Euler, N. Euler, P. G. L. Leach, J. Nonlinear Math. Phys., 14:2 (2007), 290–310 | DOI | MR | Zbl

[2] K. Andriopoulos, P. G. L. Leach, Phys. Lett. A, 359:3 (2006), 199–203 | DOI | MR | Zbl

[3] K. Andriopoulos, P. G. L. Leach, A. Maharaj, On differential sequences, arXiv: 0704.3243 | MR

[4] A. B. Shabat, V. V. Sokolov, “Classification of integrable evolution equations”, Mathematical Physics Reviews, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 4, ed. S. P. Novikov, Harwood Academic, Chur, 1984, 221–280 | MR | Zbl

[5] R. Conte (ed.), The Painlevé Property. One Century Later, CRM Ser. Math. Phys., Springer, New York, 1999 | MR | Zbl

[6] G. W. Bluman, S. C. Anco, Symmetry and Integration Methods for Differential Equations, Appl. Math. Sci., 154, Springer, New York, 2002 | MR | Zbl

[7] M. Euler, N. Euler, N. Petersson, Stud. Appl. Math., 111:3 (2003), 315–337 | DOI | MR | Zbl