Description of braids in terms of first-order spectral problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 1, pp. 58-63
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the representation of colored braids in terms of world lines of return points of an infinite string in the space $E_{1,2}$. We propose a description of braids by a pair of first-order spectral problems for $2{\times}2$ matrices.
Keywords: braid, three-dimensional string.
@article{TMF_2009_159_1_a2,
     author = {S. V. Talalov},
     title = {Description of braids in~terms of first-order spectral problems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {58--63},
     year = {2009},
     volume = {159},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a2/}
}
TY  - JOUR
AU  - S. V. Talalov
TI  - Description of braids in terms of first-order spectral problems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 58
EP  - 63
VL  - 159
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a2/
LA  - ru
ID  - TMF_2009_159_1_a2
ER  - 
%0 Journal Article
%A S. V. Talalov
%T Description of braids in terms of first-order spectral problems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 58-63
%V 159
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a2/
%G ru
%F TMF_2009_159_1_a2
S. V. Talalov. Description of braids in terms of first-order spectral problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 1, pp. 58-63. http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a2/

[1] V. O. Manturov, Teoriya uzlov, RKhD, Moskva–Izhevsk, 2005 | MR | Zbl

[2] J. Preskill, Topological quantum computation, chap. 9 of Lecture Notes for Physics 219/ Computer Science 219: Quantum Computation, 2004; http://theory. caltech.edu/~preskill/ ph219/ topological.pdf.

[3] S. V. Talalov, TMF, 152:3 (2007), 430–439 | DOI | MR | Zbl

[4] S. V. Talalov, TMF, 123:1 (2000), 38–43 ; J. Phys. A, 22 (1989), 2275 | DOI | MR | Zbl | DOI | MR | Zbl

[5] B. M. Barbashov, V. V. Nesterenko, Model relyativistskoi struny v fizike adronov, Energoatomizdat, M., 1987 | MR

[6] M. R. Anderson, The Mathematical Theory of Cosmic Strings. Cosmic Strings in the Wire Approximation, Ser. High Energy Phys. Cosmol. Gravit., IOP, Bristol, 2003 | MR | Zbl

[7] A. K. Pogrebkov, S. V. Talalov, TMF, 70:3 (1987), 342–247 | DOI | MR

[8] G. P. Pronko, A. V. Razumov, L. D. Solovev, EChAYa, 14:3 (1983), 558–577 | MR

[9] G. P. Dzhordzhadze, A. K. Pogrebkov, M. K. Polivanov, TMF, 40:2 (1979), 221–234 | DOI | MR | Zbl

[10] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | MR | Zbl

[11] S. V. Talalov, TMF, 71:3 (1987), 357–369 | DOI | MR | Zbl

[12] M. Levin, X.-G. Wen, Phys. Rev. Lett., 96:11 (2006), 110405 | DOI

[13] A. K. Pogrebkov, M. K. Polivanov, “The Liouville and Sinh-Gordon Equations. Singular Solutions, Dynamics of Singularities and the Inverse Problem Method”, Mathematical Physics Reviews, Sov. Sci. Rev. Sect. C, 5, ed. S. P. Novikov, Harwood Academic, Chur, 1985, 197–272 | MR | Zbl