Bose condensate in the two-dimensional case, the $\lambda$-point, and the Thiess–Landau two-fluid model
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 1, pp. 174-176
Cet article a éte moissonné depuis la source Math-Net.Ru
We discuss the relation between the Bose condensate and economic crisis problems, number theory, and clusterization.
Keywords:
Bose condensate, percolation, crisis.
Mots-clés : $\lambda$-point
Mots-clés : $\lambda$-point
@article{TMF_2009_159_1_a10,
author = {V. P. Maslov},
title = {Bose condensate in the~two-dimensional case, the~$\lambda$-point, and {the~Thiess{\textendash}Landau} two-fluid model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {174--176},
year = {2009},
volume = {159},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a10/}
}
TY - JOUR AU - V. P. Maslov TI - Bose condensate in the two-dimensional case, the $\lambda$-point, and the Thiess–Landau two-fluid model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 174 EP - 176 VL - 159 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a10/ LA - ru ID - TMF_2009_159_1_a10 ER -
V. P. Maslov. Bose condensate in the two-dimensional case, the $\lambda$-point, and the Thiess–Landau two-fluid model. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 1, pp. 174-176. http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a10/
[1] H. N. V. Temperley, Proc. Roy. Soc. London A, 199:1058 (1949), 361–375 | MR | Zbl
[2] I. A. Kvasnikov, Termodinamika i statisticheskaya fizika. T. 2. Teoriya ravnovesnykh sistem. Statisticheskaya fizika, Uchebnoe posobie, URSS, M., 2002 | MR
[3] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika T. V. Statisticheskaya fizika, Nauka, M., 1964 | MR | MR | Zbl
[4] V. P. Maslov, Matem. zametki, 74:6 (2003), 944–947 | DOI | MR | Zbl
[5] V. P. Maslov, Russ. J. Math. Phys., 16:1 (2009), 103–120 | DOI | MR | Zbl
[6] V. P. Maslov, TMF, 157:2 (2008), 250–272 | DOI | MR | Zbl