Quantum trajectories of an oscillator interacting with an electromagnetic field, a classical force, and a heat bath
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 444-459
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a solvable problem describing the dynamics of a quantum oscillator interacting with an electromagnetic field, a classical force, and a heat bath. We propose a general method for solving Markovian master equations, the method of quantum trajectories. We construct the stochastic evolution operator involving the stochastic analogue of the Baker–Hausdorff formula and calculate the system density matrix for an arbitrary initial state. As a physical application, we evaluate the influence of the environment at a finite temperature on the accuracy of measuring a weak classical force by the interference method.
Keywords: open quantum system, stochastic differential equation, quantum measurement.
@article{TMF_2009_158_3_a9,
     author = {A. M. Sinev},
     title = {Quantum trajectories of an~oscillator interacting with an~electromagnetic field, a~classical force, and a~heat bath},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {444--459},
     year = {2009},
     volume = {158},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a9/}
}
TY  - JOUR
AU  - A. M. Sinev
TI  - Quantum trajectories of an oscillator interacting with an electromagnetic field, a classical force, and a heat bath
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 444
EP  - 459
VL  - 158
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a9/
LA  - ru
ID  - TMF_2009_158_3_a9
ER  - 
%0 Journal Article
%A A. M. Sinev
%T Quantum trajectories of an oscillator interacting with an electromagnetic field, a classical force, and a heat bath
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 444-459
%V 158
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a9/
%G ru
%F TMF_2009_158_3_a9
A. M. Sinev. Quantum trajectories of an oscillator interacting with an electromagnetic field, a classical force, and a heat bath. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 444-459. http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a9/

[1] C. W. Gardiner, P. Zoller, Quantum Noise, Springer Ser. Synergetics, Springer, Berlin, 2004 | DOI | MR | Zbl

[2] H. J. Carmichael, An Open System Approach to Quantum Optics, Springer, Berlin, 1993

[3] V. P. Belavkin, A. Barchielli, J. Phys. A, 24:7 (1991), 1495–1514 | DOI | MR

[4] V. P. Belavkin, TVP, 38:4 (1993), 742–757 | DOI | MR | Zbl

[5] M. B. Menskii, Kvantovye izmereniya i dekogerentsiya. Modeli i fenomenologiya, Fizmatlit, M., 2001 | MR | MR | Zbl

[6] V. I. Man'ko, V. A. Sharapov, E. V. Shchukin, Probability representation of kinetic equation for open quantum system, arXiv:quant-ph/0305119

[7] M. Caponigro, S. Mancini, V. I. Man'ko, Forteschr. Phys., 54:7 (2006), 602–612 | DOI | MR | Zbl

[8] A. M. Chebotarev, Lectures on Quantum Probability, Math. Contrib. Texts, 14, SMM, México, 2000 | MR | Zbl

[9] G. Lindblad, Comm. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl

[10] S. Bose, K. Jacobs, P. L. Knight, Phys. Rev. A, 56:5 (1997), 4175–4186 | DOI

[11] C. Brif, A. Mann, J. Opt. B: Quantum Semiclass. Opt., 2:1 (2000), 53–61 | DOI

[12] A. D. Venttsel, M. I. Freindlin, Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979 | MR | Zbl

[13] I. V. Girsanov, TVP, 5:3 (1960), 314–330 | DOI | MR | Zbl

[14] E. Yanke, F. Emde, F. Lesh, Spetsialnye funktsii. Formuly, grafiki, tablitsy, Nauka, M., 1977 | MR | MR | Zbl

[15] H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements, Springer, Berlin, 2000 | Zbl

[16] A. M. Sinev, On a quantum model of a laser-interferometer measuring a weak classical force, arXiv:0806.3212

[17] V. B. Braginsky, M. L. Gorodetsky, F. Ya. Khalili, Phys. Lett. A, 246:6 (1998), 485–497 | DOI

[18] A. M. Sinev, Matem. zametki, 84:3 (2008), 395–408 | DOI | MR | Zbl