The number of bound states of a one-particle Hamiltonian on a three-dimensional lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 425-443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Hamiltonian $\hat h_{\mu\lambda}$, $\mu,\lambda\ge0$, describing the motion of one quantum particle on a three-dimensional lattice in an external field. We investigate the number of eigenvalues and their arrangement depending on the value of the interaction energy for $\mu\ge0$ and $\lambda\ge0$.
Keywords: one-particle Hamiltonian, continuous spectrum, virtual level, eigenvalue, Birman—Schwinger operator, Fredholm determinant.
@article{TMF_2009_158_3_a8,
     author = {S. N. Lakaev and I. N. Bozorov},
     title = {The~number of bound states of a~one-particle {Hamiltonian} on a~three-dimensional lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {425--443},
     year = {2009},
     volume = {158},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a8/}
}
TY  - JOUR
AU  - S. N. Lakaev
AU  - I. N. Bozorov
TI  - The number of bound states of a one-particle Hamiltonian on a three-dimensional lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 425
EP  - 443
VL  - 158
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a8/
LA  - ru
ID  - TMF_2009_158_3_a8
ER  - 
%0 Journal Article
%A S. N. Lakaev
%A I. N. Bozorov
%T The number of bound states of a one-particle Hamiltonian on a three-dimensional lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 425-443
%V 158
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a8/
%G ru
%F TMF_2009_158_3_a8
S. N. Lakaev; I. N. Bozorov. The number of bound states of a one-particle Hamiltonian on a three-dimensional lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 425-443. http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a8/

[1] V. Efimov, YaF, 12 (1970), 1080–1091

[2] V. Efimov, Phys. Lett. B, 33:8 (1970), 563–564 | DOI

[3] D. R. Yafaev, Matem. sb., 94(136):4(8) (1974), 567–593 | DOI | MR | Zbl

[4] H. Tamura, Nagoya Math. J., 130 (1993), 55–83 | DOI | MR | Zbl

[5] S. A. Vugal'ter, G. M. Zhislin, Comm. Math. Phys., 87:1 (1982), 89–103 | DOI | MR | Zbl

[6] S. N. Lakaev, Funkts. analiz. i ego pril., 27:3 (1993), 15–28 | DOI | MR | Zbl

[7] S. Albeverio, S. N. Lakaev, Z. I. Muminov, Ann. Henri Poincaré, 5:4 (2004), 743–772 | DOI | MR | Zbl

[8] S. Albeverio, S. N. Lakaev, K. A. Makarov, Z. I. Muminov, Comm. Math. Phys., 262:1 (2006), 91–115 | DOI | MR | Zbl

[9] S. N. Lakaev, Sh. M. Tilavova, TMF, 101:2 (1994), 235–251 | DOI | MR | Zbl

[10] E. L. Lakshtanov, R. A. Minlos, Funkts. analiz i ego pril., 39:1 (2005), 39–55 | DOI | MR | Zbl

[11] R. G. Newton, J. Math. Phys., 18:7 (1977), 1348–1357 | DOI | MR

[12] B. Simon, J. Funct. Anal., 40:1 (1981), 66–83 | DOI | MR | Zbl

[13] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl

[14] S. Albeverio, F. Gestezi, R. Kheeg-Kron, X. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR | MR | Zbl

[15] S. Albeverio, S. N. Lakaev, T. H. Rasulov, J. Statist. Phys., 127:2 (2007), 191–220 | DOI | MR | Zbl

[16] M. Sh. Birman, Vestn. LGU, 16:13 (1961), 163–166 | MR

[17] J. Schwinger, Proc. Nat. Acad. Sci. USA, 47:1 (1961), 122–129 | DOI | MR