The~number of bound states of a~one-particle Hamiltonian on a~three-dimensional lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 425-443
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Hamiltonian $\hat h_{\mu\lambda}$, $\mu,\lambda\ge0$, describing the motion of one quantum particle on a three-dimensional lattice in an external field. We investigate the number of eigenvalues and their arrangement depending on the value of the interaction energy for $\mu\ge0$ and $\lambda\ge0$.
Keywords:
one-particle Hamiltonian, continuous spectrum, virtual level, eigenvalue, Birman—Schwinger operator, Fredholm determinant.
@article{TMF_2009_158_3_a8,
author = {S. N. Lakaev and I. N. Bozorov},
title = {The~number of bound states of a~one-particle {Hamiltonian} on a~three-dimensional lattice},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {425--443},
publisher = {mathdoc},
volume = {158},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a8/}
}
TY - JOUR AU - S. N. Lakaev AU - I. N. Bozorov TI - The~number of bound states of a~one-particle Hamiltonian on a~three-dimensional lattice JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 425 EP - 443 VL - 158 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a8/ LA - ru ID - TMF_2009_158_3_a8 ER -
%0 Journal Article %A S. N. Lakaev %A I. N. Bozorov %T The~number of bound states of a~one-particle Hamiltonian on a~three-dimensional lattice %J Teoretičeskaâ i matematičeskaâ fizika %D 2009 %P 425-443 %V 158 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a8/ %G ru %F TMF_2009_158_3_a8
S. N. Lakaev; I. N. Bozorov. The~number of bound states of a~one-particle Hamiltonian on a~three-dimensional lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 425-443. http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a8/